| 山東半島2023年12月暴雪水汽來源與水汽條件分析 |
| 作者:胡萬亭 郭建英 |
| 單位:河南大學 濮陽工學院, 河南 濮陽 457001 |
| 關(guān)鍵詞:山東半島 海效應暴雪 水汽來源 水汽通量 散度 |
| 分類號:P458 |
|
| 出版年·卷·期(頁碼):2025·42·第一期(98-106) |
|
摘要:
|
| 2023年12月15—22日,山東半島東北部出現(xiàn)極端海效應暴雪,多個氣象站點積雪深度突破記錄,嚴重影響了交通出行。利用衛(wèi)星數(shù)據(jù)和氣象站點數(shù)據(jù)分析了此次降水的空間分布和時間變化,通過WAM2layers模型追蹤了煙臺、威海地區(qū)降雪的水汽來源并統(tǒng)計了各個水汽源的貢獻率,最后利用ERA5數(shù)據(jù)對暴雪產(chǎn)生的水汽條件進行了分析。結(jié)果表明:渤海和黃海西北部區(qū)域是主要的水汽來源地,其為煙臺、威海地區(qū)的降雪貢獻了近50%的水汽;高緯度地區(qū)南下的強冷空氣為水汽傳輸提供了動力條件,溫暖的海面提供了水汽和水汽上升的熱力條件,半島地形抬升加劇了水汽輻合上升;暴雪時段,山東半島東北部氣流有顯著異常的下層輻合上層輻散的特征。 |
| From December 15th to 22nd, 2023, an extreme ocean-effect snowstorm occurred in the northwest of Shandong Peninsula, and the snow depth at multiple weather stations has broken records, seriously affecting transportation and travel. The spatial distribution and temporal variation of precipitation are analyzed using satellite data and weather station data. The moisture sources of snowfall in Yantai and Weihai areas are tracked and the contribution rates of each moisture source are calculated using the WAM2layers model. The moisture conditions that cause snowfall are analyzed using ERA5 data. The results show that the Bohai Sea and the northwest part of the Yellow Sea are the main sources of moisture, contributing nearly 50% of the moisture to snowfall in Yantai and Weihai areas. The strong cold air moving southward in high latitude areas provides dynamic conditions for water vapor transport, while the warm sea surface provides thermal conditions for water vapor and its rise. The uplift of the peninsula terrain intensifies the convergence of water vapor. During snowstorm periods, the airflow in the northeast of the peninsula exhibits significant anomalous characteristics of convergence at lower pressure levels and divergence at upper pressure levels. |
|
參考文獻:
|
[1] 王琪, 楊成芳, 張?zhí)K平, 等. 一次典型大范圍冷流暴雪個例的診斷分析[J]. 中國海洋大學學報, 2014, 44(6): 18-27. WANG Q, YANG C F, ZHANG S P, et al. A diagnosis analysis of an ocean-effect snow in Shandong Peninsula on 30 December, 2010[J]. Periodical of Ocean University of China, 2014, 44(6): 18-27. [2] 楊成芳, 李澤椿. 近十年中國海效應降雪研究進展[J]. 海洋氣象學報, 2018, 38(4): 1-10. YANG C F, LI Z C. Review of the research on the ocean-effect snow in China in the past decade[J]. Journal of Marine Meteorology, 2018, 38(4): 1-10. [3] 李剛, 劉暢, 曹玥瑤, 等. 一次1月山東半島東部極端海效應暴雪的發(fā)生機制分析[J]. 氣象, 2020, 46(8): 1074-1088. LI G, LIU C, CAO Y Y, et al. Case study on generation mechanism of extreme ocean-effect snowstorm in the east of Shandong Peninsula in January[J]. Meteorological Monthly, 2020, 46(8): 1074-1088. [4] 江羽西, 張?zhí)K平, 程相坤, 等. 一次渤海海效應暴雪云團的衛(wèi)星觀測及成因分析[J]. 中國海洋大學學報, 2016, 46(5): 1-13. JIANG Y X, ZHANG S P, CHENG X K, et al. Satellitic observation and genetic analysis of clouds of a Bohai sea-effect snowstorm[J]. Periodical of Ocean University of China, 2016, 46(5): 1-13. [5] 楊成芳, 王俊. 利用單多普勒雷達資料做冷流暴雪的中尺度分析[J]. 高原氣象, 2009, 28(5): 1034-1043. YANG C F, WANG J. Analysis on mesoscale character to oceaneffect snowstorm using single-Doppler radar data[J]. Plateau Meteorology, 2009, 28(5): 1034-1043. [6] 楊成芳, 李澤椿, 李靜, 等. 山東半島一次持續(xù)性強冷流降雪過程的成因分析[J]. 高原氣象, 2008, 27(2): 442-451. YANG C F, LI Z C, LI J, et al. A diagnostic analyses on peculiar persistent cold airflow snowstorm process in Shandong Peninsula [J]. Plateau Meteorology, 2008, 27(2): 442-451. [7] 李鵬遠, 傅剛, 郭敬天, 等. 2005年 12月上旬山東半島暴雪的觀測與數(shù)值模擬研究[J]. 中國海洋大學學報, 2009, 39(2): 173-180. LI P Y, FU G, GUO J T, et al. An analysis and numerical modeling of a snowstorm event over Shandong Peninsula in December, 2005[J]. Periodical of Ocean University of China, 2009, 39(2): 173-180. [8] 周雪松, 楊成芳, 張少林. 地形對冷流暴雪影響的可能機制研究[J]. 安徽農(nóng)業(yè)科學, 2011, 39(31): 19419-19422. ZHOU X S, YANG C F, ZHANG S L. Study on possible mechanism of terrain influence to cold airflow snowstorm[J]. Journal of Anhui Agricultural Sciences, 2011, 39(31): 19419-19422. [9] 鄭怡, 楊成芳, 郭俊建, 等. 一次罕見的山東半島西部海效應暴雪過程的特征及機理研究[J]. 高原氣象, 2019, 38(5): 1017-1026. ZHENG Y, YANG C F, GUO J J, et al. Analysis on the characteristics and mechanism of a rare ocean-effect snowstorm in the western Shandong Peninsula[J]. Plateau Meteorology, 2019, 38(5): 1017-1026. [10] 李穎, 蘇鳳閣, 湯秋鴻, 等. 青藏高原主要流域的降水水汽來源[J]. 中國科學: 地球科學, 2022, 52(7): 1328-1344. LI Y, SU F G, TANG Q H, et al. Contributions of moisture sources to precipitation in the major drainage basins in the Tibetan Plateau[J]. Science China Earth Sciences, 2022, 52(7): 1328-1344. [11] STOHL A, JAMES P. A Lagrangian analysis of the atmospheric branch of the global water cycle. Part I: method description, validation, and demonstration for the August 2002 flooding in Central Europe[J]. Journal of Hydrometeorology, 2004, 5(4): 656-678. [12] 陽坤, 湯秋鴻, 盧麾. 青藏高原降水再循環(huán)率與水汽來源辨析[J]. 中國科學: 地球科學, 2022, 52(3): 574-578. YANG K, TANG Q H, LU H. Precipitation recycling ratio and water vapor sources on the Tibetan Plateau[J]. Science China Earth Sciences, 2022, 65(3): 584-588. [13] LIU X, YANG M X, WANG H, et al. Moisture sources and atmospheric circulation associated with the record-breaking rainstorm over Zhengzhou city in July 2021[J]. Natural Hazards, 2023, 116(1): 817-836. [14] LI X Z, ZHOU W, CHEN Y D. Detecting the origins of moisture over southeast China: seasonal variation and heavy rainfall[J]. Advances in Atmospheric Sciences, 2016, 33(3): 319-329. [15] 張弛, 吳紹洪. 西南地區(qū)夏季極端降水的水汽來源分析[J]. 自然資源學報, 2021, 36(5): 1186-1194. ZHANG C, WU S H. An analysis on moisture source of extreme precipitation in Southwest China in summer[J]. Journal of Natural Resources, 2021, 36(5): 1186-1194. [16] GUO L, VAN DER ENT R J, KLINGAMAN N P, et al. Moisture sources for East Asian precipitation: mean seasonal cycle and interannual variability[J]. Journal of Hydrometeorology, 2019, 20(4): 657-672. [17] INSUA-COSTA D, MIGUEZ-MACHO G. A new moisture tagging capability in the Weather Research and Forecasting model: formulation, validation and application to the 2014 Great Lake-effect snowstorm[J]. Earth System Dynamics, 2018, 9(1): 167-185. [18] 金曉龍, 邵華, 張弛, 等. GPM衛(wèi)星降水數(shù)據(jù)在天山山區(qū)的適用性分析[J]. 自然資源學報, 2016, 31(12): 2074-2085. JIN X L, SHAO H, ZHANG C, et al. The applicability evaluation of three satellite products in Tianshan Mountains[J]. Journal of Natural Resources, 2016, 31(12): 2074-2085. [19] 程揚, 郭燕, 齊鵬云, 等. GPM IMERGE衛(wèi)星遙感降水數(shù)據(jù)在巢湖流域的精度評價[J]. 水土保持研究, 2020, 27(5): 188-193. CHENG Y, GUO Y, QI P Y, et al. Analysis of accuracy of GPM IMERGE precipitation data in Chaohu Basin[J]. Research of Soil and Water Conservation, 2020, 27(5): 188-193. [20] 方勉, 何君濤, 符永銘, 等. GPM衛(wèi)星降水數(shù)據(jù)在沿海地區(qū)的適用性分析——以三亞市為例[J]. 氣象科技, 2020, 48(5): 622-629. FANG M, HE J T, FU Y M, et al. Applicability analysis of GPM satellite precipitation data in coastal areas: a case in Sanya[J]. Meteorological Science and Technology, 2020, 48(5): 622-629. [21] VAN DER ENT R J, WANG-ERLANDSSON L, KEYS P W, et al. Contrasting roles of interception and transpiration in the hydrological cycle-Part 2: moisture recycling[J]. Earth System Dynamics Discussions, 2014, 5: 471-489. |
|
服務與反饋:
|
|
【文章下載】【發(fā)表評論】【查看評論】【加入收藏】
|
|
|