| WRF動力降尺度方法在廣東近海風資源評估中的適用性分析 |
| 作者:杜夢蛟1 2 王臻臻3 張磊2 文仁強1 李華4 5 夏靜雯3 辛欣3 易侃1 賈天下1 |
單位:1. 中國長江三峽集團有限公司科學技術(shù)研究院, 北京 100038; 2. 中國長江三峽集團有限公司廣東分公司, 廣東 廣州 510030; 3. 寧波市鄞州區(qū)氣象局, 浙江 寧波 315194; 4. 南京信息工程大學 水利部水文氣象災害機理與預警重點實驗室/氣象災害預報預警與評估協(xié)同創(chuàng)新中 |
| 關(guān)鍵詞:風能資源 適用性評估 海上風電 WRF模式 |
| 分類號:P457.5 |
|
| 出版年·卷·期(頁碼):2025·42·第一期(89-97) |
|
摘要:
|
| 利用WRF模式對ERA5再分析數(shù)據(jù)進行動力降尺度,獲得近海高分辨率的WRF數(shù)據(jù),并利用3座測風塔觀測數(shù)據(jù)對WRF高分辨率數(shù)據(jù)和ERA5再分析數(shù)據(jù)進行適用性分析。結(jié)果表明:WRF模式的風速與觀測更為接近,ERA5易低估各層風速;WRF和ERA5對廣東近海主導風向的再現(xiàn)能力基本一致,且均能反映主導風向;WRF和ERA5風速的時間序列與觀測的相關(guān)性都很高,均通過99%顯著性檢驗;相較于ERA5,WRF擬合得到的威布爾參數(shù)與觀測更為接近。因此相較于ERA5,WRF模擬數(shù)據(jù)更適用于對廣東風能資源的評估。利用WRF模擬得到的廣東近海風資源空間分布結(jié)果表明,廣東近海風能密度大(>200 W/m2),有效風速的出現(xiàn)頻率高(>0.88),且具有單一或兩個主導風向,以上特征有利于廣東近海的風能資源開發(fā)。 |
| This study employs the WRF model (Weather Research and Forecasting Model, WRF) to dynamically downscale ERA5 (ECMWF Reanalysis v5) reanalysis data, yielding high-resolution WRF data. The applicability of the WRF high-resolution data and ERA5 reanalysis data is assessed using observation data of 3 wind towers. Results show that wind speeds derived from the WRF exhibit closer agreement with observations, whereas ERA5 tends to underestimate wind speeds. Both WRF and ERA5 demonstrate comparable capabilities in reproducing the dominant wind directions in offshore Guangdong, reflecting these directions as well. The correlation coefficient between WRF (ERA5) and the observations exceeds the 99% confidence level. Compared with ERA5, the performance of Weibull fitting using WRF data is closer to the observations. Consequently, WRF data are more suitable than ERA5 for assessing wind energy resources in offshore Guangdong. The spatial distribution of wind resources, as derived from WRF data, reveals substantial wind power densities (>200 W/m2), a high frequency of effective wind speeds (>0.88). These factors, combined with the presence of one or two dominant wind directions, collectively indicate favorable conditions for wind energy development in offshore Guangdong. |
|
參考文獻:
|
[1] 辛華龍. 中國海上風能開發(fā)研究展望[J]. 中國海洋大學學報, 2010, 40(6): 147-152. XIN H L. Aspect on the development of offshore wind energy in China[J]. Periodical of Ocean University of China, 2010, 40(6): 147-152. [2] 龔強, 袁國恩, 張云秋, 等. MM5模式在風能資源普查中的應用試驗[J]. 資源科學, 2006, 28(1): 145-150. GONG Q, YUAN G E, ZHANG Y Q, et al. Application of MM5 model in wind energy resources survey[J]. Resources Science, 2006, 28(1): 145-150. [3] 廣東印發(fā)《廣東省碳達峰實施方案》[J]. 中國氯堿, 2023(2): 58. Implementation plan for carbon peak in Guangdong Province[J]. China Chlor-Alkali, 2023(2): 58. [4] 李澤椿, 朱蓉, 何曉鳳, 等. 風能資源評估技術(shù)方法研究[J]. 氣象學報, 2007, 65(5): 708-717. LI Z C, ZHU R, HE X F, et al. Study on the assessment technology of wind energy resource[J]. Acta Meteorologica Sinica, 2007, 65(5): 708-717. [5] 羅勇, 曹鵬, 楊鳳志, 等. 中尺度數(shù)據(jù)在風電項目前期開發(fā)過程中的應用現(xiàn)狀[J]. 船舶工程, 2020, 42(S2): 233-235. LUO Y, CAO P, YANG F Z, et al. Application status of mesoscale data in early stage of development process of wind power projects [J]. Ship Engineering, 2020, 42(S2): 233-235. [6] 龔強, 袁國恩, 汪宏宇, 等. 應用MM5模式對地面大風過程的模擬試驗[J]. 氣象, 2005, 31(4): 53-57. GONG Q, YUAN G E, WANG H Y, et al. Simulation experiments on surface gale process with MM5 model[J]. Meteorological Monthly, 2005, 31(4): 53-57. [7] 高山紅, 謝紅琴, 吳增茂, 等. 臺風影響下渤海及鄰域海面風場演變過程的MM5模擬分析[J]. 青島海洋大學學報, 2001, 31(3): 325-331. GAO S H, XIE H Q, WU Z M, et al. A simulation analysis of the evolution of the surface wind fields of Bohai Sea and the vicinity area under the influence of typhoon Tai-Tak with MM5[J]. Journal of Ocean University of Qingdao, 2001, 31(3): 325-331. [8] 凌鐵軍, 張?zhí)N斐, 楊學聯(lián), 等. 中尺度數(shù)值預報模式(MM5)在海面風場預報中的應用[J]. 海洋預報, 2004, 21(4): 1-9. LIN T J, ZHANG Y F, YANG X L, et al. The application of MM5 model to predict sea surface wind field[J]. Marine Forecasts, 2004, 21(4): 1-9. [9] 杜夢蛟, 鄧浩, 文仁強, 等. 大氣再分析資料在中國近海的風資源特征和適用性分析[J]. 氣候與環(huán)境研究, 2023, 28(5): 483-494. DU M J, DENG H, WEN R Q, et al. Wind resource characteristics and applicability of atmospheric reanalysis data in offshore China [J]. Climatic and Environmental Research, 2023, 28(5): 483-494. [10] 朱景, 袁慧珍. ERA再分析陸面溫度資料在浙江省的適用性[J]. 氣象科技, 2019, 47(2): 289-298. ZHU J, YUAN H Z. Applicability of ERA reanalysis data of land surface temperature in Zhejiang Province[J]. Meteorological Science and Technology, 2019, 47(2): 289-298. [11] 張凱峰, 項杰, 楊波, 等. 基于ERA-interim再分析資料的ASCAT風場產(chǎn)品在南海的精度評估及南海月平均風場特征分析[J]. 海洋預報, 2017, 34(2): 27-36. ZHANG K F, XIANG J, YANG B, et al. Validation of ASCAT satellite scatterometer winds based on ERA-interim and monthly mean wind field over the South China Sea[J]. Marine Forecasts, 2017, 34(2): 27-36. [12] 孟憲貴, 郭俊建, 韓永清. ERA5再分析數(shù)據(jù)適用性初步評估[J]. 海洋氣象學報, 2018, 38(1): 91-99. MENG X G, GUO J J, HAN Y Q. Preliminarily assessment of ERA5 reanalysis data[J]. Journal of Marine Meteorology, 2018, 38(1): 91-99. [13] 許昌, 吉曉紅, 胡會永, 等. 利用再分析數(shù)據(jù)插補測風數(shù)據(jù)的準確性分析[J]. 風能, 2017(5): 100-104. XU C, JI X H, HU H Y, et al. Accuracy analysis of the wind tower data with interpolation from reanalysis data[J]. Wind Energy, 2017(5): 100-104. [14] 劉霄, 賴旭, 鄭付明. 基于再分析數(shù)據(jù)的測風數(shù)據(jù)插補方法[J]. 華中科技大學學報(自然科學版), 2017, 45(7): 78-83. LIU X, LAI X, ZHENG F M. Analysis of the interpolation method for wind speed data based on reanalysis data[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2017, 45(7): 78-83. [15] 馮雙磊, 王偉勝, 劉純, 等. NCEP/NCAR再分析數(shù)據(jù)在風能資源評估中的應用研究[J]. 資源科學, 2009, 31(7): 1233-1237. FENG S L, WANG W S, LIU C, et al. The application of NCEP/NCAR reanalysis data to the assessment of the wind resource[J]. Resources Science, 2009, 31(7): 1233-1237. [16] 敖雪, 翟晴飛, 崔妍, 等. 三種風場再分析資料在遼寧省海岸帶的比較與評估[J]. 高原氣象, 2018, 37(1): 275-285. AO X, ZHAI Q F, CUI Y, et al. Comparison and evaluation of three types of wind field reanalysis data in coastal zone of Liaoning Province[J]. Plateau Meteorology, 2018, 37(1): 275-285. [17] 張德, 朱蓉, 羅勇, 等. 風能模擬系統(tǒng)west在中國風能數(shù)值模擬中的應用[J]. 高原氣象, 2008, 27(1): 202-207. ZHANG D, ZHU R, LUO Y, et al. Application of wind energy simulation toolkit (WEST) to wind energy numerical simulation of China[J]. Plateau Meteorology, 2008, 27(1): 202-207. [18] 易侃, 張子良, 張皓, 等. 海上風能資源評估數(shù)值模擬技術(shù)現(xiàn)狀及發(fā)展趨勢[J]. 分布式能源, 2021, 6(1): 1-6. YI K, ZHANG Z L, ZHANG H, et al. Technical status and development trends of numerical modeling for offshore wind resource assessment[J]. Distributed Energy, 2021, 6(1): 1-6. [19] 黃俊輝, 孫文濤, 李辰, 等. 基于WRF模式的海上風能資源特性分析及評價[J]. 太陽能學報, 2021, 42(7): 278-283. HUANG J H, SUN W T, LI C, et al. Analysis and evaluation of offshore wind energy resources characteristics based on WRF model[J]. Acta Energiae Solaris Sinica, 2021, 42(7): 278-283. [20] 杜夢蛟, 易侃, 文仁強, 等. WRF模式中不同物理參數(shù)化方案組合在中國近海風能資源評估中的適用性研究[J]. 海洋預報, 2023, 40(1): 65-78. DU M J, YI K, WEN R Q, et al. Study on the applicability of different combination of physical parameterization schemes of WRF model in assessing offshore wind energy resources of China [J]. Marine Forecasts, 2023, 40(1): 65-78. [21] HERSBACH H, BELL B, BERRISFORD P, et al. ERA5 hourly data on single levels from 1940 to present[Z]. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), 2023, DOI: 10.24381/cds.adbb2d47. [22] 彭雯, 高艷紅. 青藏高原融凍過程中能量和水分循環(huán)的模擬研究[J]. 冰川凍土, 2011, 33(2): 364-373. PENG W, GAO Y H. A simulation of the energy and water cycles in seasonal freezing-thawing process on the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2011, 33(2): 364-373. [23] 許建偉, 高艷紅. WRF模式對夏季黑河流域氣溫和降水的模擬及檢驗[J]. 高原氣象, 2014, 33(4): 937-946. XU J W, GAO Y H. Validation of summer surface air temperature and precipitation simulation over Heihe River Basin[J]. Plateau Meteorology, 2014, 33(4): 937-946. [24] MA M, HE B, GUAN Y, et al. Assessment of global wind energy resource utilization potential[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2017, XLII-2/W7: 1283-1289. [25] ARSLAN T, MURAT BULUT Y, YAVUZ A A. Comparative study of numerical methods for determining Weibull parameters for wind energy potential[J]. Renewable and Sustainable Energy Reviews, 2014, 40: 820-825. [26] 中華人民共和國國家質(zhì)量監(jiān)督檢驗檢疫總局. GB/T 18710-2002風電場風能資源評估方法[S]. 北京: 中國標準出版社, 2004: 1-19. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. GB/T 18710-2002 Methodology of wind energy resource assessment for wind farm [S]. Beijing: China Standard Press: 1-19. [27] 王哲, 張韌, 葛珊珊, 等. 俄羅斯北部海域風能資源的時空特征分析[J]. 海洋科學進展, 2018, 36(3): 465-477. WANG Z, ZHANG R, GE S S, et al. Spatial and temporal characteristics of wind energy resources in northern sea of Russia [J]. Advances in Marine Science, 2018, 36(3): 465-477. [28] 周武, 黃小丹, 黃忠, 等. 陽江地區(qū)海陸風特征及其影響[J]. 氣象, 2008, 34(12): 44-53. ZHOU W, HUANG X D, HUANG Z, et al. The characteristic of sea-land breeze in Yangjiang Area and its impact on precipitation and temperature[J]. Meteorological Monthly, 2008, 34(12): 44-53. |
|
服務(wù)與反饋:
|
|
【文章下載】【發(fā)表評論】【查看評論】【加入收藏】
|
|
|