| 基于譜逼近探究臺風(fēng)初始場誤差對路徑誤差的影響 |
| 作者:梁東1 3 來志剛2 英曉明1 3 曾志豪2 高娜3 趙明利1 3 |
單位:1. 自然資源部海洋環(huán)境探測技術(shù)與應(yīng)用重點實驗室, 廣東 廣州 510300; 2. 廣東省海洋資源與近岸工程重點實驗室, 中山大學(xué)海洋科學(xué)學(xué)院, 廣東 廣州 510275; 3. 自然資源部南海發(fā)展研究院, 廣東 廣州 510300 |
| 關(guān)鍵詞:初始場誤差 非對稱對流 位渦趨勢診斷 路徑誤差 |
| 分類號:P457.8 |
|
| 出版年·卷·期(頁碼):2025·42·第一期(71-80) |
|
摘要:
|
| 針對多層嵌套中尺度天氣研究與預(yù)報模式(WRF),以1713號臺風(fēng)“天鴿”為例,研究不同的熱啟動方式對臺風(fēng)模擬精度的影響,并以1614號臺風(fēng)“莫蘭蒂”、1822號臺風(fēng)“山竹”和2309號臺風(fēng)“蘇拉”為例進(jìn)行模擬驗證。結(jié)果表明:使用譜逼近能夠減少大尺度環(huán)境場誤差,改善臺風(fēng)周圍環(huán)境場,減小多層嵌套WRF模式的初始場誤差;此技術(shù)能避免由于垂直風(fēng)切變的增強和累積降雨量的增大,減弱了非對稱對流活動的強度;如果不使用該技術(shù),加熱項將削弱水平平流項對臺風(fēng)的引導(dǎo)作用,導(dǎo)致24~72 h臺風(fēng)路徑模擬誤差增加。結(jié)果揭示:采用譜逼近技術(shù)可有效縮小大尺度環(huán)境場的誤差,優(yōu)化臺風(fēng)周邊環(huán)境場,并降低多層嵌套WRF模式初始場的誤差,防止垂直風(fēng)切變過度增強和累積降雨量異常增加,從而減輕非對稱對流活動的強度,避免加熱項削弱水平平流項對臺風(fēng)的導(dǎo)向作用,提高臺風(fēng)路徑模擬準(zhǔn)確性。 |
| Based on multi-layer nested Weather Research Forecasting Model (WRF), the effects of different hot initializing methods on the simulation accuracy of No.1713 Typhoon "Hato" were studied, and No.1614 Typhoon "Meranti", No.1822 Typhoon "Mangkhut" and No.2309 Typhoon "Saola" are chosen as verification cases. The results showed that spectral nudging method could reduce the errors of large scale environment and initial field of the WRF model, and improve the environment field of the typhoon, which can avoid the elevation of vertical wind shear and cumulative rainfall, and weaken the intensity of the asymmetric convective activity of the typhoon. Otherwise, the diabatic heating would weaken the guidance of the horizontal advection to the typhoons, leading to an increase in the simulation error of typhoon paths within 24~72 hours. |
|
參考文獻(xiàn):
|
[1] 張愷, 楊隆浩, 高建清, 等. 基于累積置信規(guī)則庫推理的臺風(fēng)災(zāi)害直接經(jīng)濟(jì)損失預(yù)測[J]. 災(zāi)害學(xué), 2024, 39(1): 64-68. ZHANG K, YANG L H, GAO J Q, et al. Typhoon disaster direct economic losses prediction based on cumulative belief rule-based system[J]. Journal of Catastrophology, 2024, 39(1): 64-68. [2] CHA D H, WANG Y Q. A dynamical initialization scheme for realtime forecasts of tropical cyclones using the WRF model[J]. Monthly Weather Review, 2013, 141(3): 964-986. [3] KWON I H, CHEONG H B. Tropical cyclone initialization with a spherical high-order filter and an idealized three-dimensional bogus vortex[J]. Monthly Weather Review, 2010, 138(4): 1344-1367. [4] WANG D L, LIANG X D, ZHAO Y, et al. A comparison of two tropical cyclone bogussing schemes[J]. Weather and Forecasting, 2008, 23(1): 194-204. [5] 馮佳寧. 集合卡爾曼濾波(EnKF)岸基雷達(dá)資料同化對登陸臺風(fēng)數(shù)值模擬的影響研究[D]. 北京: 中國氣象科學(xué)研究院, 2017. FENG J N. Study on groud-based radar data assimilation through Ensemble Kalman Filter on landing typhoon[D]. Beijing: Chinese Academy of Meteorological Sciences, 2017. [6] 顧建峰. 多普勒雷達(dá)資料三維變分直接同化方法研究[D]. 南京: 南京信息工程大學(xué), 2006. GU J F. Study on the direct assimilation method of threedimensional variational data of Doppler radar[D]. Nanjing: Nanjing University of Information Science & Technology, 2006. [7] WALDRON K M, PAEGLE J, HOREL J D. Sensitivity of a spectrally filtered and nudged limited-area model to outer model options[J]. Monthly Weather Review, 1996, 124(3): 529-547. [8] STORCH H V, LANGENBERG H, FESER F. A spectral nudging technique for dynamical downscaling purposes[J]. Monthly Weather Review, 2000, 128(10): 3664-3673. [9] ROCKEL B, CASTRO C L, PIELKE SR R A, et al. Dynamical downscaling: assessment of model system dependent retained and added variability for two different regional climate models[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D21): D21107. [10] FESER F, VON STORCH H. Regional modelling of the western Pacific typhoon season 2004[J]. Meteorologische Zeitschrift, 2008, 17(4): 519-528. [11] 王淑莉, 徐祥德, 康紅文, 等. 應(yīng)用譜逼近方法模擬2008年初南方持續(xù)性降水過程及其水汽通道周期特征分析[J]. 大氣科學(xué), 2016, 40(3): 476-488. WANG S L, XU X D, KANG H W, et al. Simulation of continuous rainfall over South China in early 2008 with the spectral nudging method and the periodicity characteristics of the water vapor channel[J]. Chinese Journal of Atmospheric Sciences, 2016, 40(3): 476-488. [12] WANG H, WANG Y Q, XU H M. Improving simulation of a tropical cyclone using dynamical initialization and large-scale spectral nudging: a case study of Typhoon Megi (2010)[J]. Acta Meteorologica Sinica, 2013, 27(4): 455-475. [13] CHA D H, JIN C S, LEE D K, et al. Impact of intermittent spectral nudging on regional climate simulation using weather research and forecasting model[J]. Journal of Geophysical Research: Atmospheres, 2011, 116(D10): D10103. [14] 張興海. 南海熱帶氣旋迅速增強的數(shù)值模擬[D]. 北京: 中國氣象科學(xué)研究院, 2017. ZHANG X H. A numerical study of tropical cyclone rapid intensification in South China Sea[D]. Beijing: Chinese Academy of Meteorological Sciences, 2017. [15] 許冬梅, 束艾青, 李泓, 等. FY-2G云導(dǎo)風(fēng)資料同化在臺風(fēng)"天鴿" 數(shù)值預(yù)報中的應(yīng)用[J]. 海洋預(yù)報, 2022, 39(1): 56-66. XU D M, SHU A Q, LI H, et al. Application of FY-2G AMVs data assimilation in typhoon "Hato" numerical forecasting[J]. Marine Forecasts, 2022, 39(1): 56-66. [16] 賈寧, 劉強, 石先武, 等. 基于現(xiàn)場調(diào)查的臺風(fēng)“天鴿”(1713)和臺風(fēng)“山竹”(1822)風(fēng)暴潮災(zāi)害影響和致災(zāi)對比分析[J]. 海洋預(yù)報, 2022, 39(5): 94-99. JIA N, LIU Q, SHI X W, et al. Comparative analysis of the impact of typhoon storm surge disaster and the disaster-causing difference between typhoon "Hato" (1713) and "Mangkhut" (1822) based on field survey[J]. Marine Forecasts, 2022, 39(5): 94-99. [17] WU L G, WANG B. A potential vorticity tendency diagnostic approach for tropical cyclone motion[J]. Monthly Weather Review, 2000, 128(6): 1899-1911. [18] WU L G, CHEN X Y. Revisiting the steering principal of tropical cyclone motion in a numerical experiment[J]. Atmospheric Chemistry and Physics, 2016, 16(23): 14925-14936. [19] WARNER J C, ARMSTRONG B, HE R Y, et al. Development of a Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System[J]. Ocean Modelling, 2010, 35(3): 230-244. [20] DOYLE J D, HODUR R M, CHEN S, et al. Tropical cyclone prediction using COAMPS-TC[J]. Oceanography, 2014, 27(3): 104-115. [21] KIMBALL S K, DOUGHERTY F C. The sensitivity of idealized hurricane structure and development to the distribution of vertical levels in MM5[J]. Monthly Weather Review, 2006, 134(7): 1987-2008. [22] BENDER M A, GINIS I, TULEYA R, et al. The operational GFDL coupled hurricane-ocean prediction system and a summary of its performance[J]. Monthly Weather Review, 2007, 135(12): 3965-3989. [23] GREEN B W, ZHANG F Q. Impacts of air-sea flux parameterizations on the intensity and structure of tropical cyclones[J]. Monthly Weather Review, 2013, 141(7): 2308-2324. [24] PUN I F, CHAN J C L, LIN I I, et al. Rapid intensification of Typhoon Hato (2017) over shallow water[J]. Sustainability, 2019, 11(13): 3709. [25] ROGERS R, REASOR P, LORSOLO S. Airborne Doppler observations of the inner-core structural differences between intensifying and steady-state tropical cyclones[J]. Monthly Weather Review, 2013, 141(9): 2970-2991. [26] 沈陽. 垂直風(fēng)切變對大西洋颶風(fēng)波尼(1998)結(jié)構(gòu)與強度的影響[D]. 南京: 南京信息工程大學(xué), 2012. SHEN Y. Effects of vertical wind shear on the structures and intensity of Hurricane Bonnie (1998) [D]. Nanjing: Nanjing University of Information Science & Technology, 2012. [27] 賀海晏. 臺風(fēng)移動規(guī)律的研究I. 非絕熱加熱與水平溫度分布的影響[J]. 熱帶氣象學(xué)報, 1995, 11(1): 1-9. HE H Y. A study on typhoon movement I. the effect of diabatic heating and horizontal temperature distribution[J]. Journal of Tropical Meteorology, 1995, 11(1): 1-9. [28] CHAN J C L. The physics of tropical cyclone motion[J]. Annual Review of Fluid Mechanics, 2005, 37(1): 99-128. |
|
服務(wù)與反饋:
|
|
【文章下載】【發(fā)表評論】【查看評論】【加入收藏】
|
|
|