|
摘要:
|
| 針對(duì)目前利用實(shí)測數(shù)據(jù)對(duì)長江口鄰近海域水質(zhì)狀況進(jìn)行分析研究相對(duì)偏少的情況,基于“淞航”號(hào)2018年春季航次對(duì)該海域的綜合觀測,利用實(shí)驗(yàn)室水樣分析數(shù)據(jù)對(duì)船載溫鹽深儀(CTD)的測量數(shù)據(jù)進(jìn)行校正,并對(duì)該區(qū)域2018年春季時(shí)節(jié)懸浮物(TSM)和葉綠素a (Chl-a)濃度的空間插值結(jié)果進(jìn)行分析。研究結(jié)果表明: CTD觀測數(shù)據(jù)與水樣分析數(shù)據(jù)呈較強(qiáng)線性相關(guān)關(guān)系。反距離權(quán)重插值對(duì)TSM和Chl-a濃度空間分布具有整體最優(yōu)的效果。TSM濃度在近岸和近海底較高,在觀測區(qū)域內(nèi)出現(xiàn)兩個(gè)高值中心; Chl-a濃度在近岸海域較高,有較明顯的片狀高值結(jié)構(gòu),垂向上表層較高。TSM與Chl-a濃度分布在長江口南北表現(xiàn)出不同的特征,且兩者具有一定的負(fù)相關(guān)性。長江徑流、外海洋流、潮汐混合等水動(dòng)力過程是影響該區(qū)域TSM和Chl-a濃度分布的主要因素。 |
| Considering the relatively few studies utilizing in-situ data on this topic, this study uses the comprehensive observational data collected by the Songhang voyage in spring 2018, to analyze the spatial distribution of total suspended matter (TSM) and chlorophyll a concentrations after correcting shipboard CTD measurements against the laboratory water sample analysis data. The results show that there is a strong linear correlation between CTD measurements and water sample analysis data. The inverse distance weight interpolation has the overall optimal effect on the spatial distribution of TSM concentration and chlorophyll a concentration. The TSM concentration is higher in the nearshore areas and in the bottom water near the seabed, and there are two high-value centers in the observation area; the chlorophyll a concentration is higher in the nearshore areas with obvious flake high-value structure, and higher in the vertical upper surface layer. The distributions of TSM concentration and chlorophyll a concentration in the north and south of the Yangtze River Estuary show different characteristics and negative correlation. The hydrodynamic processes including the runoff of the Yangtze River, ocean currents, and tidal mixing are the main factors affecting the distribution characteristics of TSM concentration and chlorophyll a concentration in the area. |
|
參考文獻(xiàn):
|
[1] 周偉華, 袁翔城, 霍文毅, 等. 長江口鄰域葉綠素a和初級(jí)生產(chǎn)力的分布[J]. 海洋學(xué)報(bào), 2004, 26(3): 143-150. ZHOU W H, YUAN X C, HUO W Y, et al. Distribution of chlorophyll a and primary productivity in the adjacent sea area of Changjiang River Estuary[J]. Acta Oceanologica Sinica, 2004, 26(3): 143-150. [2] WOHL C, BROWN I, KITIDIS V, et al. Underway seawater and atmospheric measurements of volatile organic compounds in the Southern Ocean[J]. Biogeosciences, 2020, 17(9): 2593-2619. [3] 黃李冰, 李義天, 孫昭華, 等. 長江河口口外海濱區(qū)域懸沙濃度分布特征研究[J]. 水力發(fā)電學(xué)報(bào), 2014, 33(6): 155-161. HUANG L B, LI Y T, SUN Z H, et al. Characteristics of suspended sediment concentration in the offshore area of Yangtze Estuary[J]. Journal of Hydroelectric Engineering, 2014, 33(6): 155-161. [4] HE Y R, WANG Y H, WU H. Regulation of algal bloom hotspots under Mega Estuarine constructions in the Changjiang River Estuary[J]. Frontiers in Marine Science, 2022, 8: 791956. [5] 邵和賓, 范德江, 張晶, 等. 三峽大壩啟用后長江口及鄰近海域秋季懸浮體、 葉綠素分布特征及影響因素[J]. 中國海洋大學(xué)學(xué)報(bào),2012, 42(5): 94-104. SHAO H B, FAN D J, ZHANG J, et al. Distribution and influencing factors of suspended matters and chlorophyll in autumn in Yangtze River Estuary post-Three Gorges Dam[J]. Periodical of Ocean University of China, 2012, 42(5): 94-104. [6] GE J Z, TORRES R, CHEN C S, et al. Influence of suspended sediment front on nutrients and phytoplankton dynamics off the Changjiang Estuary: a FVCOM-ERSEM coupled model experiment [J]. Journal of Marine Systems, 2020, 204: 103292. [7] CAFFREY J M, CLOERN J E, GRENZ C. Changes in production and respiration during a spring phytoplankton bloom in San Francisco Bay, California, USA: implications for net ecosystem metabolism[J]. Marine Ecology Progress Series, 1998, 172: 1-12. [8] GAO X L, SONG J M. Phytoplankton distributions and their relationship with the environment in the Changjiang Estuary, China [J]. Marine Pollution Bulletin, 2005, 50(3): 327-335. [9] WANG Y H, WU H, LIN J, et al. Phytoplankton blooms off a high turbidity estuary: a case study in the Changjiang River Estuary[J]. Journal of Geophysical Research: Oceans, 2019, 124(11): 8036-8059. [10] 宋慶磊, 杜德文, 丁明, 等. 協(xié)同克里格方法在東海表面溫度場數(shù)據(jù)插值中的應(yīng)用[J]. 海岸工程, 2011, 30(3): 49-55. SONG Q L, DU D W, DING M, et al. Application of Co-Kriging method to interpolation of surface temperature data in East China Sea[J]. Coastal Engineering, 2011, 30(3): 49-55. [11] 李海濤, 邵澤東. 空間插值分析算法綜述[J]. 計(jì)算機(jī)系統(tǒng)應(yīng)用,2019, 28(7): 1-8. LI H T, SHAO Z D. Review of spatial interpolation analysis algorithm[J]. Computer Systems & Applications, 2019, 28(7): 1-8. [12] 唐江浪, 李剛. 基于MapGIS的海洋地學(xué)空間數(shù)據(jù)插值方法探析[J]. 現(xiàn)代信息科技, 2019, 3(19): 20-23. TANG J L, LI G. Analysis of spatial data interpolation methods of ocean geosciences based on MapGIS[J]. Modern Information Technology, 2019, 3(19): 20-23. [13] 陳慧文, 陳錦輝, 吳建輝, 等. 基于空間插值法的長江口海水質(zhì)量評(píng)價(jià)[J]. 安徽農(nóng)學(xué)通報(bào), 2020, 26(6): 77-82. CHEN H W, CHEN J H, WU J H, et al. Evaluation of seawater quality in the Yangtze River Estuary based on spatial interpolation [J]. Anhui Agricultural Science Bulletin, 2020, 26(6): 77-82. [14] FANG S, VERHOEF W, ZHOU Y X, et al. Satellite estimates of wide-range suspended sediment concentrations in Changjiang (Yangtze) Estuary using MERIS data[J]. Estuaries and Coasts, 2010, 33(6): 1420-1429. [15] 左書華, 李九發(fā), 萬新寧, 等. 長江河口懸沙濃度變化特征分析[J]. 泥沙研究, 2006(3): 68-75. ZUO S H, LI J F, WAN X N, et al. Characteristics of temporal and spatial variation of suspended sediment concentration in the Changjiang Estuary[J]. Journal of Sediment Research, 2006(3): 68-75. [16] 邵和賓, 范德江, 麥曉磊, 等. 長江口典型斷面懸浮體顆粒類型與粒級(jí)構(gòu)成及其影響因素[J]. 海洋地質(zhì)與第四紀(jì)地質(zhì), 2013, 33(3): 47-56. SHAO H B, FAN D J, MAI X L, et al. Types and size of suspended particles in a typical cross section at the Changjiang Estuary and influence factors[J]. Marine Geology & Quaternary Geology, 2013, 33(3): 47-56. [17] FIRDAUS M R, FITRIYA N, WIJAYANTI L A S, et al. The vertical profile of chlorophyll-a in the waters of submarine volcano of Kawio Barat, Indonesia[J]. IOP Conference Series: Earth and Environmental Science, 2021, 789: 012004. [18] 沈永明, 鄭永紅, 吳修廣. 近岸海域污染物遷移轉(zhuǎn)化的三維水質(zhì)動(dòng)力學(xué)模型[J]. 自然科學(xué)進(jìn)展, 2004, 14(6): 694-699. SHEN Y M, ZHENG Y H, WU X G, et al. A three-dimensional water quality dynamics model of pollutant migration and transformation in nearshore seas[J]. Progress in Natural Science, 2004, 14(6): 694-699. [19] 劉述錫, 林風(fēng)翱. 河北海域熒光法測定葉綠素含量周年季節(jié)分層分布[J]. 海洋環(huán)境科學(xué), 2009, 28(6): 710-714. LIU S X, LIN F A. The layered distribution of chlorophylla detected by fluorescent method in different seasons in Hebei offshore[J]. Marine Environmental Science, 2009, 28(6): 710-714. [20] 楊少磊, 謝玲玲, 楊慶軒. SBE911plus CTD剖面儀的現(xiàn)場校正與數(shù)據(jù)處理[J]. 海洋技術(shù), 2008, 27(3): 23-26. YANG S L, XIE L L, YANG Q X. Field calibration and data-processing of SBE911plus CTD profiler[J]. Journal of Ocean Technology, 2008, 27(3): 23-26. [21] 周艷霞, 笪良龍, 韓梅, 等. 基于ArcGIS的海水溫度空間插值方法研究[C]//張叔英. 中國聲學(xué)學(xué)會(huì)水聲學(xué)分會(huì)2013年全國水聲學(xué)學(xué)術(shù)會(huì)議論文集.《聲學(xué)技術(shù)》 編輯部,上海, 2013: 214-216. ZHOU Y X, DA L L, HAN M, et al. The research of the method of seawater temperature interpolation based on ArcGIS[J]//ZHANG S Y. 2013 National Conference on Hydroacoustics of Hydroacoustics Branch of Chinese Society of Acoustics. Editorial Department of Acoustic Technology, 2013: 214-216. [22] 陳黃蓉, 張靖瑋, 王勝強(qiáng), 等. 長江口及鄰近海域的濁度日變化遙感研究[J]. 光學(xué)學(xué)報(bào), 2020, 40(5): 0501003. CHEN H R, ZHANG J W, WANG S Q, et al. Study on diurnal variation of turbidity in the Yangtze Estuary and adjacent areas by Remote Sensing[J]. Acta Optica Sinica, 2020, 40(5): 0501003. [23] 陳沈良, 張國安, 楊世倫, 等. 長江口水域懸沙濃度時(shí)空變化與泥沙再懸浮[J]. 地理學(xué)報(bào), 2004, 59(2): 260-266. CHEN S L, ZHANG G A, YANG S L, et al. Temporal and spatial changes of suspended sediment concentration and resuspension in the Yangtze River Estuary and its adjacent waters[J]. Acta Geographica Sinica, 2004, 59(2): 260-266. [24] 楊作升, 郭志剛, 王兆祥, 等. 黃東海陸架懸浮體向其東部深海區(qū)輸送的宏觀格局[J]. 海洋學(xué)報(bào), 1992, 14(2): 81-90. YANG Z S, GUO Z G, WANG Z X, et al. Macro pattern of transport of suspended debris from the Huangdong Sea shelf to its eastern deep sea area[J]. Acta Oceanologica Sinica, 1992, 14(2): 81-90. [25] 孫效功, 方明, 黃偉. 黃、 東海陸架區(qū)懸浮體輸運(yùn)的時(shí)空變化規(guī)律[J]. 海洋與湖沼, 2000, 31(6): 581-587. SUN X G, FANG M, HAUNG W. Spatial and temporal variations in suspended particulate matter transport on the Yellow and East China Sea shelf[J]. Oceanologia et Limnologia Sinica, 2000, 31(6): 581-587. [26] O'REILLY J E, BUSCH D A. Phytoplankton primary production on the northwestern Atlantic shelf[J]. Rapport et Proces-Vervbaux Des Reunions, 1984, 183: 255-268. [27] 吳瓊. 長江入海徑流對(duì)長江口浮游植物影響的模擬研究[D]. 南京: 南京信息工程大學(xué), 2021. WU Q. Simulation of the effect of runoff from the Yangtze River on phytoplankton in the Yangtze Estuary[D]. Nanjing: Nanjing University of Information Science & Technology, 2021. [28] 趙丹丹. 中尺度渦及海洋動(dòng)力要素對(duì)葉綠素分布的影響[D]. 青島: 中國科學(xué)院大學(xué)(中國科學(xué)院海洋研究所), 2021. ZHAO D D. The influence of mesoscale eddies and oceanic dynamic factors on the distribution of chlorophyll[D]. Qingdao: University of Chinese Academy of Sciences (Institute of Oceanology Chinese Academy of Sciences), 2021. [29] 袁涌銓. 人類活動(dòng)與自然驅(qū)動(dòng)不同背景下的典型海域營養(yǎng)鹽分布與關(guān)鍵過程研究[D]. 青島: 中國科學(xué)院研究生院(海洋研究所), 2016. YUAN Y Q. Distribution and key processes of nutrients in the typical waters with anthropogenic activities and natural influences [D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2016. [30] DING Y Z, FU D Y, WEI Z H, et al. The spatial distribution of chlorophyll-a in Changjiang River Estuary and adjacent sea in spring[C]//Proceedings of SPIE 7150, Remote Sensing of Inland, Coastal, and Oceanic Waters. Noumea: SPIE, 2008: 715015. [31] XU L J, YANG D Z, YU R C, et al. Nonlocal population sources triggering dinoflagellate blooms in the Changjiang Estuary and adjacent seas: a modeling study[J]. Journal of Geophysical Research: Biogeosciences, 2021, 126(11): e2021JG006424. [32] 胡松, 李敏華, 劉必林, 等. 黑潮延伸體區(qū)域葉綠素季節(jié)變化以及中尺度渦對(duì)其影響機(jī)制研究[J]. 海洋與湖沼, 2020, 51(6): 1370-1378. HU S, LI M H, LIU B L, et al. Seasonal characteristics of chlorophyll a concentration in Kuroshio extension and influences of Mesoscale eddies[J]. Oceanologia et Limnologia Sinica, 2020, 51(6): 1370-1378. [33] 俞秀霞, 孫琳, 陳長平. 廈門港葉綠素的時(shí)空分布及其與水環(huán)境因子關(guān)系的多元分析[J]. 海洋科學(xué), 2021, 45(6): 49-62. YU X X, SUN L, CHEN C P. Chlorophyll content in Xiamen Bay —spatiotemporal distri-bution and relationship with water environmental factors[J]. Marine Sciences, 2021, 45(6): 49-62. [34] 王勇智, 江文勝. 渤、 黃、 東海懸浮物質(zhì)量濃度冬、 夏季變化的數(shù)值模擬[J]. 海洋科學(xué)進(jìn)展, 2007, 25(1): 28-33. WANG Y Z, JIANG W S. Numerical simulation of variations in Winter and Summer suspended material concentrations in the Bohai Sea, Yellow Sea and East China Sea[J]. Advances in Marine Science, 2007, 25(1): 28-33. [35] 梁洲, 潘揚(yáng)航, 祝嗣騰, 等. 長江口鄰近海域總懸浮顆粒物的時(shí)空分布及其影響因素[J]. 廈門大學(xué)學(xué)報(bào)(自然科學(xué)版), 2020, 59(S1): 50-55. LIANG Z, PAN Y H, ZHU S T, et al. Spatiotemporal distribution and influencing factors of total suspended particles in the Yangtze River Estuary adjacent sea area[J]. Journal of Xiamen University (Natural Science), 2020, 59(S1): 50-55. |
|
服務(wù)與反饋:
|
|
【文章下載】【發(fā)表評(píng)論】【查看評(píng)論】【加入收藏】
|
|
|