首頁期刊介紹通知公告編 委 會(huì)投稿須知電子期刊廣告合作聯(lián)系我們在線留言
 
GNSS-IR測量水位的精度評估和站點(diǎn)對比:以中國南海北部和日本南部站點(diǎn)為例
作者:葉脈1  李琳琳1 2  彭冬菊3  王培濤4  邱強(qiáng)5 6 7 
單位:1. 中山大學(xué)地球科學(xué)與工程學(xué)院, 廣東省地球動(dòng)力作用與地質(zhì)災(zāi)害重點(diǎn)實(shí)驗(yàn)室, 廣東 珠海 519082;
2. 南方海洋科學(xué)與工程廣東省實(shí)驗(yàn)室(珠海), 廣東 珠海 519082;
3. 香港理工大學(xué)土地測量及地理資訊學(xué)系, 香港 999077;
4. 國家海洋環(huán)境預(yù)報(bào)中心, 北京 100081;
5. 中
關(guān)鍵詞:GNSS-IR 長期水位 風(fēng)暴潮 反演影響因素 
分類號:P731.34
出版年·卷·期(頁碼):2024·41·第一期(61-73)
摘要:
通過南海北部和日本多個(gè)實(shí)例,量化分析影響近岸全球衛(wèi)星導(dǎo)航系統(tǒng)干涉反射計(jì)(GNSS-IR)反演潮位或風(fēng)暴潮過程效果的主要影響因素。結(jié)果表明:接收機(jī)所能接收的衛(wèi)星信號波段數(shù)量、反射信號功率對反演的時(shí)間分辨率和精度影響巨大。研究以香港HKQT站點(diǎn)為例量化多模多頻GNSS-IR監(jiān)測風(fēng)暴潮的優(yōu)勢,同時(shí)展示日本J425站點(diǎn)在潮位站空缺地區(qū)記錄完整風(fēng)暴潮波形的能力。分別針對衛(wèi)星信號接受波段、硬件配置、臺站架設(shè)位置和架設(shè)高度等因素,對未來架設(shè)具有測量海平面能力的近岸GNSS站點(diǎn)提供具體的指導(dǎo)意見。
In this study, we quantitatively analyze the factors influencing the inversion accuracy of tide or storm surge processes at several representative nearshore GNSS(Global Navigation Satellite System)stations in the northern South China Sea and Japan. Our findings indicate that the number of satellite signal bands received by the receiver and the power of the reflected signal significantly affect the time resolution and accuracy of the inversion. This research quantifies the benefits derived from employing multi-mode and multi-frequency GNSS monitoring for storm surges in the Hong Kong HKQT station. Furthermore, it highlights the capability of the Japanese J425 site to capture a comprehensive storm surge waveform in regions lacking tide stations. In addition, this study offers specific recommendations for future deployment of nearshore GNSS stations equipped with sea level measurement capabilities, taking into consideration factors such as satellite signal receiving bands, hardware configurations, station installation locations, and installation heights.
參考文獻(xiàn):
[1] HERRERA-GARCÍA G, EZQUERRO P, TOMÁS R, et al. Mapping the global threat of land subsidence[J]. Science, 2021, 371(6524): 34-36.
[2] NICHOLLS R J, LINCKE D, HINKEL J, et al. A global analysis of subsidence, relative sea-level change and coastal flood exposure[J]. Nature Climate Change, 2021, 11(4): 338-342.
[3] BENVENISTE J, CAZENAVE A, VIGNUDELLI S, et al. Requirements for a coastal hazards observing system[J]. Frontiers in Marine Science, 2019, 6: 348.
[4] LYNETT P, MCCANN M, ZHOU Z L, et al. Diverse tsunamigenesis triggered by the Hunga Tonga-Hunga Ha’ apai eruption[J]. Nature, 2022, 609(7928): 728-733.
[5] TITOV V, RABINOVICH A B, MOFJELD H O, et al. The global reach of the 26 December 2004 sumatra tsunami[J]. Science, 2005, 309(5743): 2045-2048.
[6] LI L L, SWITZER A D, WANG Y, et al. A modest 0.5-m rise in sea level will double the tsunami hazard in Macau[J]. Science Advances, 2018, 4(8): eaat1180.
[7] 國家海洋局. 2017年中國海洋災(zāi)害公報(bào)[EB/OL]. 北京: 國家海洋局, 2018. (2023-12-26). Marine Early Warning and Monitoring Department of the Ministry of Natural Resources. Bulletin of China Marine Disasters in 2017[EB/OL]. (2023-12-26).
[8] LI L L, YANG J, LIN C Y, et al. Field survey of typhoon hato (2017) and a comparison with storm surge modeling in Macau[J]. Natural Hazards and Earth System Sciences, 2018, 18(12): 3167-3178.
[9] KNUTSON T R, MCBRIDE J L, CHAN J, et al. Tropical cyclones and climate change[J]. Nature Geoscience, 2010, 3(3): 157-163.
[10] YANG J, CHEN M X. Potential impacts of flood risk with rising sea level in Macau: dynamic simulation from historical Typhoon Mangkhut (2018)[J]. Ocean Engineering, 2022, 246: 110605.
[11] ZHOU D X, LIU Y, FENG Y K, et al. Absolute sea level changes along the coast of China from tide gauges, gnss, and satellite altimetry[J]. Journal of Geophysical Research: Oceans, 2022, 127(9): e2022JC018994.
[12] 張?jiān)? 張楊陽, 孟婉婷, 等. 機(jī)載GNSS反射信號海面測高模型的研究[J]. 海洋學(xué)報(bào), 2020, 42(3): 149-156. ZHANG Y, ZHANG Y Y, MENG W T, et al. Research on sea surface altimetry model of airborne GNSS reflected signal[J]. Haiyang Xuebao, 2020, 42(3): 149-156.
[13] The Climate Change Initiative Coastal Sea Level Team. Coastal sea level anomalies and associated trends from Jason satellite altimetry over 2002-2018[J]. Scientific Data, 2020, 7(1): 357.
[14] FRITZ H M, BLOUNT C, SOKOLOSKI R, et al. Hurricane katrina storm surge reconnaissance[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(5): 644-656.
[15] FRITZ H M, BLOUNT C D, ALBUSAIDI F B, et al. Cyclone gonu storm surge in oman[J]. Estuarine, Coastal and Shelf Science, 2010, 86(1): 102-106.
[16] TSUSHIMA H, HIRATA K, HAYASHI Y, et al. Near-field tsunami forecasting using offshore tsunami data from the 2011 off the Pacific coast of Tohoku Earthquake[J]. Earth, Planets and Space, 2011, 63(7): 56.
[17] WOODWORTH P L, WÖPPELMANN G, MARCOS M, et al. Why we must tie satellite positioning to tide gauge data[J]. Eos, Transactions American Geophysical Union, 2017, 98(4): 13-15.
[18] WÖPPELMANN G, MARCOS M. Vertical land motion as a key to understanding sea level change and variability[J]. Reviews of Geophysics, 2016, 54(1): 64-92.
[19] GEORGIADOU Y, KLEUSBERG A. On carrier signal multipath effects in relative GPS positioning[J]. Manuscripta Geodaetica, 1988, 13(3): 172-179.
[20] ELÓSEGUI P, DAVIS J L, JALDEHAG R T K, et al. Geodesy using the global positioning system: the effects of signal scattering on estimates of site position[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B6): 9921-9934.
[21] LARSON K M. Unanticipated uses of the global positioning system[J]. Annual Review of Earth and Planetary Sciences, 2019, 47: 19-40.
[22] MCCREIGHT J L, SMALL E E, LARSON K M. Snow depth, density, and SWE estimates derived from GPS reflection data: Validation in the western U. S. [J]. Water Resources Research, 2014, 50(8): 6892-6909.
[23] SIEGFRIED M R, MEDLEY B, LARSON K M, et al. Snow accumulation variability on a West Antarctic ice stream observed with GPS reflectometry, 2007-2017[J]. Geophysical Research Letters, 2017, 44(15): 7808-7816.
[24] LARSON K M, SMALL E E. Estimation of snow depth using L1 GPS signal-to-noise ratio data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(10): 4802-4808.
[25] WAN W, LARSON K M, SMALL E E, et al. Using geodetic GPS receivers to measure vegetation water content[J]. GPS Solutions, 2015, 19(2): 237-248.
[26] SMALL E E, LARSON K M, CHEW C C, et al. Validation of GPS-IR soil moisture retrievals: comparison of different algorithms to remove vegetation effects[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(10): 4759-4770.
[27] LARSON K M. GPS interferometric reflectometry: applications to surface soil moisture, snow depth, and vegetation water content in the western United States[J]. WIREs Water, 2016, 3(6): 775-787.
[28] LARSON K M, LÖFGREN J S, HAAS R. Coastal sea level measurements using a single geodetic GPS receiver[J]. Advances in Space Research, 2013, 51(8): 1301-1310.
[29] LARSON K M, RAY R D, NIEVINSKI F G, et al. The accidental tide gauge: a GPS reflection case study from kachemak bay, Alaska[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(5): 1200-1204.
[30] HOLDEN L D, LARSON K M. Ten years of Lake Taupō surface height estimates using the GNSS interferometric reflectometry[J]. Journal of Geodesy, 2021, 95(7): 74.
[31] LARSON K M, RAY R D, WILLIAMS S D P. A 10-year comparison of water levels measured with a geodetic GPS receiver versus a conventional tide gauge[J]. Journal of Atmospheric and Oceanic Technology, 2017, 34(2): 295-307.
[32] PENG D J, FENG L J, LARSON K M, et al. Measuring coastal absolute sea-level changes using GNSS interferometric reflectometry[J]. Remote Sensing, 2021, 13(21): 4319.
[33] LARSON K M, LAY T, YAMAZAKI Y, et al. Dynamic sea level variation from GNSS: 2020 shumagin earthquake tsunami resonance and hurricane laura[J]. Geophysical Research Letters, 2021, 48(4): e2020GL091378.
[34] PENG D J, HILL E M, LI L L, et al. Application of GNSS interferometric reflectometry for detecting storm surges[J]. GPS Solutions, 2019, 23(2): 47.
[35] VU P L, HA M C, FRAPPART F, et al. Identifying 2010 Xynthia storm signature in GNSS-R-based tide records[J]. Remote Sensing, 2019, 11(7): 782.
[36] 何秀鳳, 王杰, 王笑蕾, 等. 利用多模多頻GNSS-IR信號反演沿海臺風(fēng)風(fēng)暴潮[J]. 測繪學(xué)報(bào), 2020, 49(9): 1168-1178. HE X F, WANG J, WANG X L, et al. Retrieval of coastal typhoon storm surge using multi-GNSS-IR[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(9): 1168-1178.
[37] ROESLER C, LARSON K M. Software tools for GNSS interferometric reflectometry (GNSS-IR) [J]. GPS Solutions, 2018, 22(3): 80.
[38] ROUSSEL N, RAMILLIEN G, FRAPPART F, et al. Sea level monitoring and sea state estimate using a single geodetic receiver [J]. Remote Sensing of Environment, 2015, 171: 261-277.
[39] LÖFGREN J S, HAAS R. Sea level measurements using multifrequency GPS and GLONASS observations[J]. EURASIP Journal on Advances in Signal Processing, 2014, 2014: 50.
[40] 金雙根, 張勤耘, 錢曉東. 全球?qū)Ш叫l(wèi)星系統(tǒng)反射測量(GNSS+R)最新 進(jìn)展 與應(yīng) 用前 景[J]. 測繪 學(xué)報(bào), 2017, 46(10): 1389-1398. JIN S G, ZHANG Q Y, QIAN X D. New progress and application prospects of global navigation satellite system reflectometry (GNSS+R)[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1389-1398.
[41] 李征航, 黃勁松. GPS測量與數(shù)據(jù)處理[M]. 武漢: 武漢大學(xué)出版社, 2005.LI Z H, HUANG J S. GPS surveying and data processing[M]. Wuhan: Wuhan University Press, 2005.
[42] SORIA J L A, SWITZER A D, VILLANOY C L, et al. Repeat storm surge disasters of typhoon haiyan and its 1897 predecessor in the Philippines[J]. Bulletin of the American Meteorological Society, 2016, 97(1): 31-48.
[43] SPENCER T, BROOKS S M, EVANS B R, et al. Southern North Sea storm surge event of 5 December 2013: water levels, waves and coastal impacts[J]. Earth-Science Reviews, 2015, 146: 120-145.
服務(wù)與反饋:
文章下載】【發(fā)表評論】【查看評論】【加入收藏
 
 海洋預(yù)報(bào)編輯部 地址:北京海淀大慧寺路8號 電話:010-62105776
投稿網(wǎng)址:http://familyfy.cn
郵箱:bjb@nmefc.cn
本系統(tǒng)由北京博淵星辰網(wǎng)絡(luò)科技有限公司設(shè)計(jì)開發(fā) 技術(shù)支持電話:010-63361626
民乐县| 陵川县| 比如县| 鹿邑县| 绥阳县| 菏泽市| 木里| 万宁市| 南丹县| 苍山县| 泰州市| 嘉善县| 清镇市| 河间市| 德江县| 沽源县| 广东省| 健康| 通化市| 贵阳市| 高阳县| 嵊泗县| 石棉县| 松原市| 泌阳县| 营山县| 廊坊市| 顺昌县| 贵阳市| 福海县| 宁晋县| 阜新市| 温州市| 益阳市| 揭阳市| 永善县| 林芝县| 尼木县| 韩城市| 绿春县| 小金县|