|
摘要:
|
| 利用1979-2020年逐時的ERA5再分析數(shù)據(jù),研究了南海區(qū)域大氣邊界層高度的氣候特征及其影響因子。結(jié)果表明:南海區(qū)域平均大氣邊界層高度為500~800 m,空間上呈中間高、四周低的分布特征。南海大氣邊界層高度具有顯著的季節(jié)變化特征,總體按照冬季、秋季、夏季、春季依次遞減,日變化較小,大部分區(qū)域邊界層高度的日變化幅度小于 300 m,日循環(huán)比較平緩。南海大氣邊界層高度顯著的季節(jié)變化特征主要受海氣溫差、海表面風、感熱通量、潛熱通量和穩(wěn)定度的共同影響。較大的海氣溫差和強風速使海表熱通量增加,下墊面不穩(wěn)定性增加,海氣相互作用加強,湍流活動增強,導致秋冬季邊界層高度較高。過去 42 a南海區(qū)域年平均大氣邊界層高度顯著增高,年平均增高率約為0.8 m/a,且邊界層高度變化存在顯著的季節(jié)差異。海表面溫度升高、潛熱通量增加以及穩(wěn)定度減小有利于邊界層的發(fā)展,可能是導致南海邊界層高度增加的主要原因。 |
| Based on hourly ERA5 reanalysis data from 1979 to 2020, the climatic characteristics and influencing factors of atmospheric boundary layer height over the South China Sea are studied. The results show that the average boundary layer height over the South China Sea is within the range of 500~800 m with a spatial distribution of higher in the middle and lower in the periphery. The boundary layer height over the South China Sea is characterized by significant seasonal variation, generally decreasing in order of winter, autumn, summer and spring, with relatively small diurnal variation. The diurnal variation amplitude of the boundary layer height in most areas is less than 300 m, and the diurnal cycle is relatively gentle. The significant seasonal variation characteristics of the boundary layer height over the South China Sea are mainly affected by the air-sea temperature difference, sea surface wind, sensible heat flux, latent heat flux and stability. The large air-sea temperature difference and strong wind speed increase the sea surface heat flux, and increase the instability of the underlying surface, and strengthen the air-sea interaction and enhance turbulence activities, leading to higher boundary layer height in autumn and winter. In the past 42 years, the annual average atmospheric boundary layer height over the South China Sea has a significant inceasing trend with the rate of about 0.8 m/yr, and there are significant seasonal differences in the variation of boundary layer height. The rise of sea surface temperature, the increase of latent heat flux and the decrease of stability may be the main reasons for the increase of boundary layer height over the South China Sea. |
|
參考文獻:
|
[1] STULL R B. An introduction to boundary layer meteorology[M]. Dordrecht, Netherlands:Springer, 1988. [2] BAKAS N A, FOTIADI A, KARIOFILLIDI S. Climatology of the boundary layer height and of the wind field over greece[J]. Atmosphere, 2020, 11(9):910. [3] 李響, 王輝, 吳輝碇, 等. 海上大氣邊界層數(shù)值預報技術發(fā)展概論[J]. 海洋預報, 2010, 27(1):72-82. LI X, WANG H, WU H D, et al. A review of techniques for numerical forecasting marine atmosphere boandary layer[J]. Marine Forecasts, 2010, 27(1):72-82. [4] 江麗芳, 尹毅, 劉春霞. 邊界層參數(shù)化方案對臺風"莫拉菲"熱力和動力結(jié)構(gòu)特征影響的對比[J]. 海洋預報, 2017, 34(4):20-31. JIANG L F, YIN Y, LIU C X. Comparison of the thermal and dynamic boundary layer structure with different boundary layer parameterizations during typhoon"Molave"[J]. Marine Forecasts, 2017, 34(4):20-31. [5] DAVIES F, MIDDLETON D R, BOZIER K E. Urban air pollution modelling and measurements of boundary layer height[J]. Atmospheric Environment, 2007, 41(19):4040-4049. [6] QUAN J N, GAO Y, ZHANG Q, et al. Evolution of planetary boundary layer under different weather conditions, and its impact on aerosol concentrations[J]. Particuology, 2013, 11(1):34-40. [7] YANG T, WANG Z F, ZHANG W, et al. Technical note:Boundary layer height determination from lidar for improving air pollution episode modeling:Development of new algorithm and evaluation[J]. Atmospheric Chemistry and Physics, 2017, 17(10):6215- 6225. [8] HOLZWORTH G C. Estimates of mean maximum mixing depths in the contiguous united states[J]. Monthly Weather Review, 1964, 92(5):235-242. [9] LIU S Y, LIANG X Z. Observed diurnal cycle climatology of planetary boundary layer height[J]. Journal of Climate, 2010, 23(21):5790-5809. [10] VON ENGELN A, TEIXEIRA J. A planetary boundary layer height climatology derived from ECMWF reanalysis data[J]. Journal of Climate, 2013, 26(17):6575-6590. [11] SEIDEL D J, ZHANG Y H, BELJAARS A, et al. Climatology of the planetary boundary layer over the continental United States and Europe[J]. Journal of Geophysical Research:Atmospheres, 2012, 117(D17):D17106. [12] GU J, ZHANG Y H, YANG N, et al. Diurnal variability of the planetary boundary layer height estimated from radiosonde data[J]. Earth and Planetary Physics, 2020, 4(5):479-492. [13] 杜一博, 張強, 王凱嘉, 等. 西北干旱區(qū)夏季晴天、陰天邊界層結(jié)構(gòu)及其陸面過程對比分析[J]. 高原氣象, 2018, 37(1):148-157. DU Y B, ZHANG Q, WANG K J, et al. The northwest arid areas in summer sunny day, cloudy day boundary layer structure and land surface process comparison analysis[J]. Plateau Meteorology, 2018, 37(1):148-157. [14] 萬云霞, 張宇, 張瑾文, 等. 感熱變化對東亞地區(qū)大氣邊界層高度的影響[J]. 高原氣象, 2017, 36(1):173-182. WAN Y X, ZHANG Y, ZHANG J W, et al. Influence of sensible heat on planetary boundary layer height in East Asia[J]. Plateau Meteorology, 2017, 36(1):173-182. [15] 蘇彥入, 呂世華, 范廣洲. 青藏高原夏季大氣邊界層高度與地表能量輸送變化特征分析[J]. 高原氣象, 2018, 37(6):1470-1485. SU Y R, LÜ S H, FAN G Z. The characteristics analysis on the summer atmospheric boundary layer height and surface heat fluxes over the Qinghai-Tibetan Plateau[J]. Plateau Meteorology, 2018, 37(6):1470-1485. [16] ZHANG W C, GUO J P, MIAO Y C, et al. Planetary boundary layer height from CALIOP compared to radiosonde over China[J]. Atmospheric Chemistry and Physics, 2016, 16(15):9951-9963. [17] SI Y D, LI S S, CHEN L F, et al. Validation and spatiotemporal distribution of GEOS-5- based planetary boundary layer height and relative humidity in China[J]. Advances in Atmospheric Sciences, 2018, 35(4):479-492. [18] 涂靜, 張?zhí)K平, 程相坤, 等. 黃東海大氣邊界層高度時空變化特征[J]. 中國海洋大學學報, 2012, 42(4):7-18. TU J, ZHANG S P, CHENG X K, et al. Temporal and spatial variation of Atmospheric Boundary Layer Height (ABLH) over the Yellow-East China Sea[J]. Periodical of Ocean University of China, 2012, 42(4):7-18. [19] 韓美, 張?zhí)K平, 尹躍進, 等. 黃東海大氣邊界層高度季節(jié)變化特征及其成因[J]. 中國海洋大學學報, 2012, 42(S1):34-44. HAN M, ZHANG S P, YIN Y J, et al. The seasonal variation and causation of atmospheric boundary layer height at Yellow-East Sea[J]. Periodical of Ocean University of China, 2012, 42(S1):34-44. [20] 于曉麗, 謝強, 王東曉. 1998年季風爆發(fā)期南海大氣邊界層的日變化[J]. 熱帶海洋學報, 2009, 28(2):31-35. YU X L, XIE Q, WANG D X. Diurnal cycle of marine atmospheric boundary layer during the 1998 summer monsoon onset over South China Sea[J]. Journal of Tropical Oceanography, 2009, 28(2):31-35. [21] GUO J P, MIAO Y C, ZHANG Y, et al. The climatology of planetary boundary layer height in China derived from radiosonde and reanalysis data[J]. Atmospheric Chemistry and Physics, 2016, 16(20):13309-13319. [22] ALLABAKASH S, LIM S. Climatology of planetary boundary layer height-controlling meteorological parameters over the Korean Peninsula[J]. Remote Sensing, 2020, 12(16):2571. [23] ZHANG Y H, SEIDEL D J, ZHANG S D. Trends in planetary boundary layer height over Europe[J]. Journal of Climate, 2013, 26(24):10071-10076. [24] GUO J P, LI Y, COHEN J B, et al. Shift in the temporal trend of boundary layer height in China using long-term (1979-2016) radiosonde data[J]. Geophysical Research Letters, 2019, 46(11):6080-6089. [25] LI J, CHU Y Q, LI X C, et al. Long-term trends of global maximum atmospheric mixed layer heights derived from radiosonde measurements[J]. Environmental Research Letters, 2020, 15(3):034054. [26] YANG D W, LI C C, LAU A K H, et al. Long-term measurement of daytime atmospheric mixing layer height over Hong Kong[J]. Journal of Geophysical Research:Atmospheres, 2013, 118(5):2422-2433. [27] 柳艷菊, 丁一匯. 南海季風爆發(fā)前后大氣層結(jié)和混合層的演變特征[J]. 氣候與環(huán)境研究, 2000, 5(4):459-468. LIU Y J, DING Y H. Evolution of the atmospheric stratification and mixed layer before and after monsoon onset over the South China Sea[J]. Climatic and Environmental Research, 2000, 5(4):459-468. [28] SEN P K. Estimates of the regression coefficient based on Kendall's Tau[J]. Journal of the American Statistical Association, 1968, 63(324):1379-1389. [29] MANN H B. Nonparametric tests against trend[J]. Econometrica, 1945, 13(3):245-259. [30] KENDALL M G. Rank correlation methods[J]. British Journal of Psychology, 1990, 25(1):86-91. [31] JOHNSON R H, CIESIELSKI P E, COTTURONE J A. Multiscale variability of the atmospheric mixed layer over the western pacific warm pool[J]. Journal of the Atmospheric Sciences, 2001, 58(18):2729-2750. |
|
服務與反饋:
|
|
【文章下載】【發(fā)表評論】【查看評論】【加入收藏】
|
|
|