|
摘要:
|
| 基于中尺度氣象數(shù)值模式 WRF(Weather Research and Forecasting),分別對(duì)我國(guó)廣東、浙江、山東這3個(gè)近海典型風(fēng)能資源儲(chǔ)備區(qū)域進(jìn)行了45組物理參數(shù)化方案組合連續(xù)1 M的敏感性試驗(yàn),對(duì)試驗(yàn)中多要素的模擬結(jié)果進(jìn)行綜合評(píng)估,分別確定了適用于3個(gè)風(fēng)能資源儲(chǔ)備區(qū)各自排名前3的物理參數(shù)化方案組合,并對(duì)其模擬性能較優(yōu)的原因進(jìn)行分析。為了測(cè)試3個(gè)風(fēng)能資源儲(chǔ)備區(qū)篩選得到的物理參數(shù)化方案組合的適用性,利用不同于敏感性試驗(yàn)時(shí)段的模擬結(jié)果,結(jié)合海上測(cè)風(fēng)塔和海洋氣象站的實(shí)測(cè)數(shù)據(jù)開展進(jìn)一步評(píng)估。結(jié)果表明,優(yōu)選得到的物理參數(shù)化方案組合具有較好的適用性,其對(duì)近海的風(fēng)速模擬性能較優(yōu),具有實(shí)際業(yè)務(wù)應(yīng)用價(jià)值。 |
| Based on the Weather Research and Forecasting (WRF) mesoscale numerical model, 45 groups of physical parameterization scheme combinations are used to conduct sensitive experiments lasting 1 month for the offshore areas of Guangdong, Zhejiang and Shandong provinces, which are the three typical wind energy resource reserve areas in China, and the simulation results of multiple elements in the experiments are comprehensively evaluated in order to determine 3 physical parameterization scheme combinations that are suitable for each of the 3 wind energy resource reserve areas. Moreover, the reason for their better simulation performance is analyzed. In order to test the applicability of the combination of physical parameterization schemes selected for the three wind energy resource reserve areas, the simulation results different from the sensitivity experiment period are used to conduct further evaluation by using the measured data from offshore wind towers and marine meteorological stations. The results show that the selected combination of physical parameterization schemes has good applicability and their performance for offshore wind speed simulation is better, which has the value of practical business application. |
|
參考文獻(xiàn):
|
[1] 夏云峰. 2019年全球新增風(fēng)電裝機(jī)超60GW[J]. 風(fēng)能, 2020(4):36-41. XIA Y F. The global installed capacity of new wind power exceeded 60GW in 2019[J]. Wind Energy, 2020(4):36-41. [2] 于晶, 馬廣東, 劉鑫, 等. 我國(guó)風(fēng)力發(fā)電發(fā)展存在的問(wèn)題及健康發(fā)展策略[J]. 工程技術(shù)(文摘版), 2022(30). YU J, MA G D, LIU X, et al. Problems and healthy development strategies of wind power generation in China[J]. Engineering Technology (Abstract Edition), 2022(30). [3] 王秀強(qiáng). 朝陽(yáng)之暉, 與時(shí)并明——2020年中國(guó)風(fēng)電行業(yè)回顧與展望[J]. 能源, 2021(2):60-65. WANG X Q. Review and prospect of China's wind power industry in 2020[J]. Energy, 2021(2):60-65. [4] 趙世明, 姜波, 徐輝奮, 等. 中國(guó)近海海洋風(fēng)能資源開發(fā)利用現(xiàn)狀與前景分析[J]. 海洋技術(shù), 2010, 29(4):117-121. ZHAO S M, JIANG B, XU H F, et al. Exploration and application of ocean wind energy resources in coastal sea of China[J]. Ocean Technology, 2010, 29(4):117-121. [5] 宋軍. 蘇北近海與陸上風(fēng)資源特性對(duì)比研究[D]. 北京:華北電力大學(xué)(北京), 2016. SONG J. Comparative research on offshore and onshore wind resources characteristics in North Jiangsu area[D]. Beijing:North China Electric Power University (Beijing), 2016. [6] 張秀芝, BODDINGTON R, 朱蓉, 等. 中國(guó)近海風(fēng)電場(chǎng)開發(fā)指南[M]. 北京:氣象出版社, 2010. ZHANG X Z, BODDINGTON R, ZHU R, et al. China offshore wind farm development guide[M]. Beijing:China Meteorological Press, 2010. [7] 陳建東, 王晶. 國(guó)外海上風(fēng)電的發(fā)展現(xiàn)狀、趨勢(shì)與展望[J]. 世界科技研究與發(fā)展, 2014, 36(4):458-464. CHEN J D, WANG J. Development status, trends and prospects of offshore wind power in some foreign countries[J]. World Sci-Tech R & D, 2014, 36(4):458-464. [8] 易躍春. 中國(guó)海上風(fēng)電2018[J]. 電力設(shè)備管理, 2018(12):81-83. YI Y C. China offshore wind power in 2018[J]. Electric Power Equipment Management, 2018(12):81-83. [9] VEERS P, DYKES K, LANTZ E, et al. Grand challenges in the science of wind energy[J]. Science, 2019, 366(6464):eaau2027. [10] 李澤椿, 朱蓉, 何曉鳳, 等. 風(fēng)能資源評(píng)估技術(shù)方法研究[J]. 氣象學(xué)報(bào), 2007, 65(5):708-717. LI Z C, ZHU R, HE X F, et al. Study on the assessment technology of wind energy resource[J]. Acta Meteorologica Sinica, 2007, 65(5):708-717. [11] BROWER M C. 風(fēng)資源評(píng)估:風(fēng)電項(xiàng)目開發(fā)實(shí)用導(dǎo)則[M]. 劉長(zhǎng)浥, 張菲, 王曉蓉, 譯. 北京:機(jī)械工業(yè)出版社, 2014. BROWER M C. Wind resource assessment:a practical guide to developing a wind project[M]. LIU C Y, ZHANG F, WANG X R, trans. Beijing:China Machine Press, 2014. [12] 朱飆, 李春華, 陸登榮. 甘肅酒泉區(qū)域風(fēng)能資源評(píng)估[J]. 干旱氣象, 2009, 27(2):152-156. ZHU B, LI C H, LU D R. Wind energy resource assessment of Jiuquan, Gansu Province[J]. Journal of Arid Meteorology, 2009, 27(2):152-156. [13] 曠芳芳, 張友權(quán), 張俊鵬, 等. 3種海面風(fēng)場(chǎng)資料在臺(tái)灣海峽的比較和評(píng)估[J]. 海洋學(xué)報(bào), 2015, 37(5):44-53. KUANG F F, ZHANG Y Q, ZHANG J P, et al. Comparison and evaluation of three sea surface wind products in Taiwan Strait[J]. Haiyang Xuebao, 2015, 37(5):44-53. [14] 廖忠云, 季民. 海洋風(fēng)場(chǎng)三維可視化方法研究[J]. 海洋信息, 2016(2):1-5. LIAO Z Y, JI M. Research on 3D visualization method of marine wind field[J]. Marine Information, 2016(2):1-5. [15] 周海, 匡禮勇, 程序, 等. 測(cè)風(fēng)塔在風(fēng)能資源開發(fā)利用中的應(yīng)用研究[J]. 水電自動(dòng)化與大壩監(jiān)測(cè), 2010, 34(5):5-8. ZHOU H, KUANG L Y, CHENG X, et al. An applied study on wind tower for wind energy resources exploitation[J]. Hydropower Automation and Dam Monitoring, 2010, 34(5):5-8. [16] 蔡樹群, 牛建偉, 何映暉, 等. 基于海上風(fēng)電場(chǎng)構(gòu)建海洋水文同步實(shí)時(shí)現(xiàn)場(chǎng)觀測(cè)系統(tǒng)的思考[J]. 熱帶海洋學(xué)報(bào), 2021, 40(3):96- 102. CAI S Q, NIU J W, HE Y H, et al. A view on constructing synchronous real-time in-situ observational system of marine hydrology based on offshore wind power field[J]. Journal of Tropical Oceanography, 2021, 40(3):96-102. [17] 謝今范, 雷楊娜, 孫嫻. 風(fēng)電場(chǎng)代表年數(shù)據(jù)訂正方法的不確定性分析[J]. 太陽(yáng)能, 2015(4):48-55. XIE J F, LEI Y N, SUN X. Uncertainty analysis of correction method for representative annual data of wind farm[J]. Solar Energy, 2015(4):48-55. [18] 韓毅, 趙勇, 童博, 等. 復(fù)雜地形風(fēng)場(chǎng)的風(fēng)資源評(píng)估方法與展望[J]. 熱力發(fā)電, 2020, 49(11):139-146. HAN Y, ZHAO Y, TONG B, et al. Review and outlook of wind resource assessment methods for wind site located at complex terrain[J]. Thermal Power Generation, 2020, 49(11):139-146. [19] 易侃, 張子良, 張皓, 等. 海上風(fēng)能資源評(píng)估數(shù)值模擬技術(shù)現(xiàn)狀及發(fā)展趨勢(shì)[J]. 分布式能源, 2021, 6(1):1-6. YI K, ZHANG Z L, ZHANG H, et al. Technical status and development trends of numerical modeling for offshore wind resource assessment[J]. Distributed Energy, 2021, 6(1):1-6. [20] 李正泉, 宋麗莉, 馬浩, 等. 海上風(fēng)能資源觀測(cè)與評(píng)估研究進(jìn)展[J]. 地球科學(xué)進(jìn)展, 2016, 31(8):800-810. LI Z Q, SONG L L, MA H, et al. Review of methodologies for offshore wind resource observation and assessment[J]. Advances in Earth Science, 2016, 31(8):800-810. [21] 程興宏, 陶樹旺, 魏磊, 等. 基于WRF模式和自適應(yīng)偏最小二乘回歸法的風(fēng)能預(yù)報(bào)試驗(yàn)研究[J]. 高原氣象, 2012, 31(5):1461- 1469. CHENG X H, TAO S W, WEI L, et al. Short-term wind power forecasting experiment based on WRF model and adapting partial least square regression method[J]. Plateau Meteorology, 2012, 31(5):1461-1469. [22] 應(yīng)有, 申新賀, 姜婷婷, 等. 基于中微尺度耦合模式的風(fēng)電場(chǎng)風(fēng)資源評(píng)估方法研究[J]. 可再生能源, 2021, 39(2):195-200. YING Y, SHEN X H, JIANG T T, et al. Research on wind resource assessment method based on the coupled mesoscalemicroscale framework[J]. Renewable Energy Resources, 2021, 39(2):195-200. [23] BILAL M, BIRKELUND Y, HOMOLA M, et al. Wind over complex terrain-Microscale modelling with two types of mesoscale winds at Nygårdsfjell[J]. Renewable Energy, 2016, 99:647-653. [24] BADGER J, FRANK H, HAHMANN A N, et al. Wind-climate estimation based on mesoscale and microscale modeling:statistical-dynamical downscaling for wind energy applications[J]. Journal of Applied Meteorology and Climatology, 2014, 53(8):1901-1919. [25] 穆海振, 徐家良, 柯曉新, 等. 高分辨率數(shù)值模式在風(fēng)能資源評(píng)估中的應(yīng)用初探[J]. 應(yīng)用氣象學(xué)報(bào), 2006, 17(2):152-159. MU H Z, XU J L, KE X X, et al. Application of high resolution numerical model to wind energy potential assessment[J]. Journal of Applied Meteorological Science, 2006, 17(2):152-159. [26] ABERSON S D. The impact of dropwindsonde data from the THORPEX pacific area regional campaign and the NOAA hurricane field program on tropical cyclone forecasts in the global forecast system[J]. Monthly Weather Review, 2011, 139(9):2689- 2703. [27] HALLY A, RICHARD E, FRESNAY S, et al. Ensemble simulations with perturbed physical parametrizations:Pre-HyMeX case studies[J]. Quarterly Journal of the Royal Meteorological Society, 2014, 140(683):1900-1916. [28] SUN G D, MU M. A new approach to identify the sensitivity and importance of physical parameters combination within numerical models using the Lund-Potsdam-Jena (LPJ) model as an example[J]. Theoretical and Applied Climatology, 2017, 128(3):587-601. [29] SKAMAROCK W C, KLEMP J B, DUDHIA J, et al. A description of the advanced research WRF version 2[R]. Boulder:NCAR, 2018,113:7-25. [30] SONG J B, FAN W, LI S, et al. Impact of surface waves on the steady near-surface wind profiles over the ocean[J]. BoundaryLayer Meteorology, 2015, 155(1):111-127. [31] CARVALHO D, ROCHA A, GÓMEZ-GESTEIRA M, et al. WRF wind simulation and wind energy production estimates forced by different reanalyses:comparison with observed data for Portugal[J]. Applied Energy, 2014, 117:116-126. [32] CLIFFORD K T. WRF-model performance for wind power forecasting in the coast ranges of central California[D]. San Jose State University, 2011. [33] HU X M, KLEIN P M, XUE M. Evaluation of the updated YSU planetary boundary layer scheme within WRF for wind resource and air quality assessments[J]. Journal of Geophysical Research:Atmospheres, 2013, 118(18):10490-10505. [34] JÄRVINEN H, LAINE M, SOLONEN A, et al. Ensemble prediction and parameter estimation system:the concept[J]. Quarterly Journal of the Royal Meteorological Society, 2012, 138(663):281-288. [35] GIANNAKOPOULOU E M, NHILI R. WRF model methodology for offshore wind energy applications[J]. Advances in Meteorology, 2014, 2014(9):68-79. [36] HERSBACH H, BELL B, BERRISFORD P, et al. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 2020, 146(730):1999-2049. [37] SMITH E A, ASRAR G, FURUHAMA Y, et al. International global precipitation measurement (GPM) program and mission:an overview[M]//LEVIZZANI V, BAUER P, TURK F J. Measuring Precipitation from Space. Dordrecht:Springer, 2007. [38] TZENG G H, HUANG J J. Multiple attribute decision making:methods and applications[M]. Boca Raton:CRC Press, 2011. [39] LIN Y L, COLLE B A. A new bulk microphysical scheme that includes riming intensity and temperature-dependent ice characteristics[J]. Monthly Weather Review, 2011, 139(3):1013- 1035. [40] NAKANISHI M, NIINO H. An improved Mellor-Yamada level- 3 model:its numerical stability and application to a regional prediction of advection fog[J]. Boundary-Layer Meteorology, 2006, 119(2):397-407. [41] BETTS A K, HONG S Y, PAN H L. Comparison of NCEP-NCAR Reanalysis with 1987 FIFE Data[J]. Monthly Weather Review, 1996, 124(7):1480-1498. [42] COLLINS W D, RASCH P J, BOVILLE B A, et al. Description of the NCAR community atmosphere model (CAM 3.0)[R]. NCAR, 2004. |
|
服務(wù)與反饋:
|
|
【文章下載】【發(fā)表評(píng)論】【查看評(píng)論】【加入收藏】
|
|
|