| 基于海嘯單位源數(shù)據(jù)庫的南中國海區(qū)域海嘯數(shù)值預報方法 |
| 作者:李宏偉1 2 3 孫立寧1 2 王宗辰1 2 徐志國1 2 3 王培濤1 2 3 史健宇1 2 |
單位:1. 國家海洋環(huán)境預報中心, 北京 100081; 2. 自然資源部海嘯預警中心, 北京 100081; 3. 國家海洋環(huán)境預報中心 自然資源部海洋災害預報技術(shù)重點實驗室, 北京 100081 |
| 關(guān)鍵詞:海嘯 預警 單位源 Slab2.0 |
| 分類號:P731.36 |
|
| 出版年·卷·期(頁碼):2023·40·第一期(21-27) |
|
摘要:
|
| 基于全球俯沖帶板片模型Slab 2.0將馬尼拉海溝劃分為80個海嘯單位源,構(gòu)建了海嘯單位源數(shù)據(jù)庫,建立了基于單位源數(shù)據(jù)庫方法預報海嘯的業(yè)務(wù)化流程。經(jīng)過與現(xiàn)有海嘯數(shù)值模型計算結(jié)果的比對,單位源數(shù)據(jù)庫預報的最大海嘯波幅平均預報一致性可以達到88%,能夠滿足業(yè)務(wù)化需求。 |
| In order to improve the tsunami early warning capability in this region, we decompose Manila Trench into 80 tsunami unit sources based on the subduction zone geometry model(Slab 2.0), and construct a tsunami unit source database. Meanwhile, we also establish an operational procedure for tsunami forecast based on the unit source database. By comparing with the results of existing tsunami numerical model, the average forecast consistency of the maximum tsunami amplitude computed by unit source database can reach 88%, which meets the operational needs of tsunami warning. |
|
參考文獻:
|
[1] 王宗辰, 原野, 王培濤, 等. 一個覆蓋太平洋區(qū)域的地震海嘯波幅預報系統(tǒng)及檢驗[J]. 海洋學報, 2019, 41(2):1-13. WANG Z C, YUAN Y, WANG P T, et al. Development and validation of a tsunami amplitude forecast system covering the whole Pacific Ocean[J]. Haiyang Xuebao, 2019, 41(2):1-13. [2] ROSHAN A D, SHAH M, PISHARADY A S, et al. Development of an expert system for tsunami warning:a unit source approach[C]//Proceedings of the CANDU Safety Association for Sustainability-2015(CANSAS-2015). Mumbai, 2015. [3] LI L L, SWITZER A D, CHAN C H, et al. How heterogeneous coseismic slip affects regional probabilistic tsunami hazard assessment:a case study in the South China Sea[J]. Journal of Geophysical Research:Solid Earth, 2016, 121(8):6250-6272. [4] YUAN Y, LI H W, WEI Y, et al. Probabilistic tsunami hazard assessment (PTHA) for southeast coast of Chinese mainland and Taiwan Island[J]. Journal of Geophysical Research:Solid Earth, 2021, 126(2):e2020JB020344. [5] BLASER L, KRUGER F, OHRNBERGER M, et al. Scaling relations of earthquake source parameter estimates with special focus on subduction environment[J]. Bulletin of the Seismological Society of America, 2010, 100(6):2914-2926. [6] STRASSER F O, ARANGO M C, BOMMER J J. Scaling of the source dimensions of interface and intraslab subduction-zone earthquakes with moment magnitude[J]. Seismological Research Letters, 2010, 81(6):941-950. [7] LI H W, YUAN Y, XU Z G, et al. The dependency of probabilistic tsunami hazard assessment on magnitude limits of seismic sources in the South China Sea and adjoining basins[J]. Pure and Applied Geophysics, 2017, 174(6):2351-2370. [8] OKAL E A, SYNOLAKIS C E, KALLIGERIS N. Tsunami simulations for regional sources in the South China and adjoining seas[J]. Pure and Applied Geophysics, 2011, 168(6):1153-1173. [9] HAYES G P, MOORE G L, PORTNER D E, et al. Slab2, a comprehensive subduction zone geometry model[J]. Science, 2018, 362(6410):58-61. [10] OKADA Y. Internal deformation due to shear and tensile faults in a half-space[J]. Bulletin of the Seismological Society of America, 1992, 82(2):1018-1040. [11] GEIST E L, PARSONS T. Probabilistic analysis of tsunami hazards[J]. Natural Hazards, 2006, 37(3):277-314. [12] MUELLER C, POWER W, FRASER S, et al. Effects of rupture complexity on local tsunami inundation:implications for probabilistic tsunami hazard assessment by example[J]. Journal of Geophysical Research:Solid Earth, 2015, 120(1):488-502. |
|
服務(wù)與反饋:
|
|
【文章下載】【發(fā)表評論】【查看評論】【加入收藏】
|
|
|