|
摘要:
|
| 采用美國國家環(huán)境預報中心高空間分辨率再分析海溫資料和中國國家海洋環(huán)境預報中心提供的逐小時全球高時間分辨率海溫數(shù)據(jù),通過WRF模式對2018年10號臺風"安比"(1810)進行數(shù)值模擬,結合臺風動力和熱力條件分析結果表明:海溫分布與位渦強度具有良好的一致性;海溫通過影響臺風內部垂直運動帶來的潛熱釋放決定對臺風強度的改變,高分辨率的海溫數(shù)據(jù)對臺風數(shù)值模擬有一定影響。 |
| Based on the sea surface temperature (SST) reanalysis data with high spatial resolution of the National Centers for Environmental Prediction and the hourly SST data with global coverage of the National Marine Environmental Forecasting Center, the Weather Research and Forecasting model is used to simulate typhoon "Ampil" (1810) in this paper. Taking the analysis results of typhoon dynamic and thermal conditions into consideration, it is found that the SST distribution is in good agreement with the intensity of the potential vorticity, and SST determines the variation of typhoon intensity by affecting the latent heat release caused by the vertical movement within the typhoon. Therefore, high-resolution SST data has a certain impact on the numerical simulation of typhoon. |
|
參考文獻:
|
[1] Xie S P. Satellite observations of cool ocean-atmosphere interaction[J]. Bulletin of the American Meteorological Society, 2004, 85(2):195-208. [2] 金祖輝, 陳雋. 西太平洋暖池區(qū)海表水溫暖異常對東亞夏季風影響的研究[J]. 大氣科學, 2002, 26(1):57-68. Jin Z H, Chen J. A composite study of the influence of SST warm anomalies over the Western Pacific warm pool on Asian summer monsoon[J]. Chinese Journal of Atmospheric Science, 2002, 26(1):57-68. [3] 孫淑清, 馬淑杰. 海溫異常對東亞夏季風及長江流域降水影響的分析及數(shù)值試驗[J]. 大氣科學, 2003, 27(1):36-52. Sun S Q, Ma S J. Analysis and numerical experiment on the relationship between the 1998 summer monsoon activities and SSTA in tropical regions[J]. Chinese Journal of Atmospheric Science, 2003, 27(1):36-52. [4] Bongirwar V, Rakesh V, Kishtawal C M, et al. Impact of satellite observed microwave SST on the simulation of tropical cyclones[J]. Natural hazards, 2011, 58(3):929-944. [5] 中華人民共和國水利部. 中國水旱災害公報-2018[M]. 北京:中國水利水電出版社, 2019. Ministry of Water Resources of the People's Republic of China. Zhongguo shuihan zaihai gongbao 2018[M]. Beijing:China Water & Power Press, 2019. [6] Emanuel K A. An air-sea interaction theory for tropical cyclones. Part I:steady-state maintenance[J]. Journal of the Atmospheric Sciences, 1986, 43(6):585-605. [7] Kasahara A. A numerical experiment on the development of a tropical cyclone[J]. Journal of the Atmospheric Sciences, 1961, 18(3):259-282. [8] Chan J C L. The physics of tropical cyclone motion[J]. Annual Review of Fluid Mechanics, 2005, 37:99-128. [9] 江敦春. 臺風中位渦收支的診斷研究[J]. 海洋學報, 1988, 10(6):764-771. Jiang D C. Diagnosis of the potential vorticity budget of typhoon[J]. Acta Oceanologica Sinica, 1988, 10(6):764-771. [10] 黃億, 壽紹文, 傅靈艷. 對一次臺風暴雨的位渦與濕位渦診斷分析[J]. 氣象, 2009, 35(1):65-73. Huang Y, Shou S W, Fu L Y. A diagnostic analysis of PV and MPV on the heavy rain caused by typhoon Khanun[J]. Meteorological Monthly, 2009, 35(1):65-73. [11] Molinari J, Skubis S, Vollaro D, et al. Potential vorticity analysis of tropical cyclone intensification[J]. Journal of the Atmospheric Sciences, 1998, 55(16):2632-2644. [12] Wu C C, Huang T S, Huang W P, et al. A new look at the binary interaction:potential vorticity diagnosis of the unusual southward movement of Tropical Storm Bopha (2000) and its interaction with Supertyphoon Saomai (2000)[J]. Monthly Weather Review, 2003, 131(7):1289-1300. [13] Wu C C, Huang T S, Chou K H. Potential vorticity diagnosis of the key factors affecting the motion of Typhoon Sinlaku (2002)[J]. Monthly Weather Review, 2004, 132(8):2084-2093. [14] Wu C C, Chen S G, Chen J H, et al. Interaction of Typhoon Shanshan (2006) with the midlatitude trough from both adjointderived sensitivity steering vector and potential vorticity perspectives[J]. Monthly Weather Review, 2009, 137(3):852-862. [15] Wu C C, Chen S G, Yang C C, et al. Potential vorticity diagnosis of the factors affecting the track of Typhoon Sinlaku (2008) and the impact from dropwindsonde data during T-PARC[J]. Monthly Weather Review, 2012, 140(8):2670-2688. [16] Li X, Ling T J, Zhang Y F, et al. A 31-year global diurnal sea surface temperature dataset created by an ocean mixed-layer model[J]. Advances in Atmospheric Sciences, 2018, 35(12):1443- 1454. [17] Ling T J, Xu M, Liang X Z, et al. A multilevel ocean mixed layer model resolving the diurnal cycle:development and validation[J]. Journal of Advances in Modeling Earth Systems, 2015, 7(4):1680-1692. [18] Ying M, Zhang W, Yu H, et al. An overview of the China meteorological administration tropical cyclone database[J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(2):287-301. [19] Lu X Q, Yu H, Ying M, et al. Western North Pacific tropical cyclone database created by the China meteorological administration[J]. Advances in Atmospheric Sciences, 38(4):690- 699. [20] Skamarock W C, Klemp J B, Dudhia J, et al. A description of the advanced research WRF model version 4[J]. National Center for Atmospheric Research:Boulder, CO, USA, 2019:145. [21] Hong S Y, Dudhia J, Chen S H. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation[J]. Monthly Weather Review, 2004, 132(1):103- 120. [22] Hong S Y, Noh Y, Dudhia J. A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Monthly Weather Review, 2006, 134(9):2318-2341. [23] Kain J S. The Kain-Fritsch convective parameterization:an update[J]. Journal of Applied Meteorology and Climatology, 2004, 43(1):170-181. [24] Zhang R W, Huangfu J L, Hu T. Dynamic mechanism for the evolution and rapid intensification of Typhoon Hato (2017)[J]. Atmospheric Science Letters, 2019, 20(8):e930. |
|
服務與反饋:
|
|
【文章下載】【發(fā)表評論】【查看評論】【加入收藏】
|
|
|