首頁期刊介紹通知公告編 委 會(huì)投稿須知電子期刊廣告合作聯(lián)系我們在線留言
 
基于多源數(shù)據(jù)的臺(tái)風(fēng)風(fēng)暴潮概率預(yù)報(bào)研究:臺(tái)風(fēng)集合的構(gòu)建
作者:郭文云1  安佰超2  裘誠(chéng)2  李鋮2  李丕學(xué)2  葛建忠3  丁平興3 
單位:1. 上海海事大學(xué)海洋科學(xué)與工程學(xué)院, 上海 201300;
2. 上海市海洋監(jiān)測(cè)預(yù)報(bào)中心, 上海 200062;
3. 華東師范大學(xué)河口海岸學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室, 上海 200062
關(guān)鍵詞:集合預(yù)報(bào) 臺(tái)風(fēng)路徑 最大風(fēng)速 概率圓 誤差分析 
分類號(hào):P731.23
出版年·卷·期(頁碼):2021·38·第一期(26-33)
摘要:
建立了一套用于臺(tái)風(fēng)風(fēng)暴潮集合預(yù)報(bào)的臺(tái)風(fēng)集合構(gòu)建方案。首先基于中國(guó)中央氣象臺(tái)、中國(guó)香港天文臺(tái)、中國(guó)臺(tái)灣中央氣象局、美國(guó)聯(lián)合臺(tái)風(fēng)預(yù)警中心、日本氣象廳和韓國(guó)氣象臺(tái)6家預(yù)報(bào)中心的預(yù)報(bào)數(shù)據(jù),構(gòu)建一個(gè)誤差更小的24 h、48 h和72 h預(yù)報(bào)時(shí)效的臺(tái)風(fēng)分析數(shù)據(jù);然后基于分析數(shù)據(jù)構(gòu)建9個(gè)路徑樣本(1條分析路徑+2個(gè)概率圓上的8條概率路徑)和3個(gè)臺(tái)風(fēng)最大風(fēng)速(概率偏弱、居中和偏強(qiáng))樣本,形成27個(gè)臺(tái)風(fēng)樣本集合,并根據(jù)分析風(fēng)場(chǎng)的誤差分布合理確定不同臺(tái)風(fēng)樣本的發(fā)生概率。通過對(duì)臺(tái)風(fēng)“利奇馬”的應(yīng)用,證實(shí)該集合方案可以覆蓋大部分可能的情景,集合樣本具有較強(qiáng)的代表性,可用于臺(tái)風(fēng)風(fēng)暴潮的集合預(yù)報(bào)。
This study establishes a scheme for creating a typhoon ensembles that is used in storm surge probabilistic forecast. Based on the forecast products of the China Meteorological Administration, Hong Kong Observatory, Central Weather Bureau, Joint Typhoon Warning Center, Japan Meteorological Administration and Korea Meteorological Administration, a typhoon analysis dataset with higher accuracy for the 24-hours, 48-hours and 72-hours forecast is created. The dataset is used to generate 9 members for track (1 analysis track and 8 probabilistic track on the probability circle) and 3 members for typhoon maximum wind speed (weak, medium and strong probability), which results in 27 typhoon ensemble members. Meanwhile, the probability of each ensemble members is determined based on the error distribution of the typhoon analysis dataset. The scheme is validated by typhoon "Lekima". The results show that the scheme includes most possible scenarios and the representativeness of the ensemble members are significant, which approves the applicability of the scheme in typhoon storm surge probabilistic forecast.
參考文獻(xiàn):
[1] 自然資源部. 2018年中國(guó)海洋災(zāi)害公報(bào)[R]. 北京:自然資源部, 2019.
[2] Wahl T, Jain S, Bender J, et al. Increasing risk of compound flooding from storm surge and rainfall for major US cities[J]. Nature Climate Change, 2015, 5(12):1093-1097.
[3] Lin N, Emanuel K, Oppenheimer M, et al. Physically based assessment of hurricane surge threat under climate change[J]. Nature Climate Change, 2012, 2(6):462-467.
[4] 王喜年. 風(fēng)暴潮預(yù)報(bào)知識(shí)講座第五講風(fēng)暴潮預(yù)報(bào)技術(shù)(2)[J]. 海洋預(yù)報(bào), 2002, 19(2):64-70.
[5] 于福江, 張占海, 林一驊. 一個(gè)穩(wěn)態(tài)Kalman濾波風(fēng)暴潮數(shù)值預(yù)報(bào)模式[J]. 海洋學(xué)報(bào), 2002, 24(5):26-35.
[6] Chen Y R, Chen L H, Zhang H, et al. Effects of wave-current interaction on the Pearl River Estuary during Typhoon Hato[J]. Estuarine, Coastal and Shelf Science, 2019, 228:106364.
[7] Peng X D, Fei J F, Huang X G, et al. Evaluation and error analysis of official forecasts of tropical cyclones during 2005-14 over the western North Pacific. Part I:storm tracks[J]. Weather and Forecasting, 2017, 32(2):689-712.
[8] 陳國(guó)民, 張喜平, 白莉娜, 等. 2016年西北太平洋和南海熱帶氣旋預(yù)報(bào)精度評(píng)定[J]. 氣象, 2018, 44(4):582-589.
[9] Colle B A, Charles M E. Spatial distribution and evolution of extratropical cyclone errors over North America and its Adjacent Oceans in the NCEP global forecast system model[J]. Weather and Forecasting, 2011, 26(2):129-149.
[10] 王堅(jiān)侃, 何寬科, 徐哲永. 臺(tái)風(fēng)"圓規(guī)" 路徑預(yù)報(bào)偏差分析[J]. 海洋預(yù)報(bào), 2012, 29(3):48-52.
[11] 柏亞周, 李訓(xùn)強(qiáng), 鄭崇偉, 等. 風(fēng)暴潮集合預(yù)報(bào)現(xiàn)狀及前景展望[J]. 中國(guó)科技信息, 2011(4):28-30.
[12] 閻秉耀, 周雅靜. 氣象資料的誤差對(duì)臺(tái)風(fēng)暴潮數(shù)值預(yù)報(bào)精度影響的估計(jì)[J]. 海洋預(yù)報(bào), 1990, 7(1):59-65.
[13] 肖夢(mèng)睫, 孫麗, 潘崇倫. 風(fēng)暴潮多路徑預(yù)報(bào)的集合預(yù)報(bào)模式研究綜述[J]. 地球, 2018(4):96-97.
[14] Kohno N, Dube S K, Entel M, et al. Recent progress in storm surge forecasting[J]. Tropical Cyclone Research and Review, 2018, 7(2):128-139.
[15] Taylor A A, Glahn B. Probabilistic guidance for hurricane storm surge[C]//19th Conference on Probability and Statistics. New Orleans, LA:American Meteorology Society, 2008.
[16] Hasegawa H, Kohno N, Higaki M, et al. Upgrade of JMA's storm surge prediction for the WMO Storm Surge Watch Scheme (SSWS)[R]. Technical Review No. 19, Tokyo:RSMC TokyoTyphoon Center, 2017:1-9.
[17] 丁雪霖, 陳永平, 顧茜. 2013年西北太平洋臺(tái)風(fēng)路徑集合預(yù)報(bào)[J]. 河海大學(xué)學(xué)報(bào)(自然科學(xué)版), 2015, 43(4):361-365.
[18] 袁杰穎, 陳永平, 潘毅, 等. 臺(tái)風(fēng)路徑集合化預(yù)報(bào)方法的優(yōu)化[J]. 海洋預(yù)報(bào), 2017, 34(2):37-42.
[19] 江應(yīng)境, 高山紅. 一種動(dòng)態(tài)權(quán)重的臺(tái)風(fēng)集成預(yù)報(bào)方法[J]. 海岸工程, 2018, 37(3):1-13.
[20] 劉瑩, 潘毅, 陳永平, 等. 預(yù)估偏差法集合化臺(tái)風(fēng)路徑概率預(yù)報(bào)[J]. 海洋預(yù)報(bào), 2019, 36(3):18-23.
[21] 王培濤, 于福江, 劉秋興, 等. 福建沿海精細(xì)化臺(tái)風(fēng)風(fēng)暴潮集合數(shù)值預(yù)報(bào)技術(shù)研究及應(yīng)用[J]. 海洋預(yù)報(bào), 2010, 27(5):7-15.
[22] 陳永平, 顧茜, 張長(zhǎng)寬. 集合化臺(tái)風(fēng)風(fēng)場(chǎng)的構(gòu)建方法研究及應(yīng)用[C]//第十六屆中國(guó)海洋(岸)工程學(xué)術(shù)討論會(huì)論文集(上冊(cè)). 大連:中國(guó)海洋學(xué)會(huì)海洋工程分會(huì), 2013.
服務(wù)與反饋:
文章下載】【發(fā)表評(píng)論】【查看評(píng)論】【加入收藏
 
 海洋預(yù)報(bào)編輯部 地址:北京海淀大慧寺路8號(hào) 電話:010-62105776
投稿網(wǎng)址:http://familyfy.cn
郵箱:bjb@nmefc.cn
本系統(tǒng)由北京博淵星辰網(wǎng)絡(luò)科技有限公司設(shè)計(jì)開發(fā) 技術(shù)支持電話:010-63361626
平度市| 吉水县| 鸡东县| 个旧市| 平阳县| 洛浦县| 安塞县| 乐昌市| 和顺县| 同江市| 东山县| 南平市| 德昌县| 博野县| 庐江县| 沙洋县| 宁津县| 万宁市| 黑山县| 阳高县| 石狮市| 唐山市| 精河县| 天气| 宁陕县| 丰顺县| 临沭县| 武宁县| 海南省| 桐柏县| 固镇县| 凤阳县| 商河县| 康定县| 定州市| 浪卡子县| 呼伦贝尔市| 夏河县| 安龙县| 乡宁县| 青冈县|