| 2019年11月西北太平洋熱帶氣旋生成頻數(shù)異常偏多的成因分析 |
| 作者:周群 黃煥卿 張潤宇 鄧小花 |
| 單位:國家海洋環(huán)境預(yù)報(bào)中心, 北京 100181 |
| 關(guān)鍵詞:熱帶氣旋 西太平洋副熱帶高壓 東亞大槽 |
| 分類號:P444 |
|
| 出版年·卷·期(頁碼):2021·38·第一期(18-25) |
|
摘要:
|
| 基于1979—2019年NCEP-DOE再分析資料、中國氣象局發(fā)布的熱帶氣旋(TC)最佳路徑數(shù)據(jù)集和HadISST全球海溫資料等,研究了2019年11月西北太平洋TC生成頻數(shù)異常偏多的可能原因。結(jié)果表明: 2019年11月西太平洋副熱帶高壓(WPSH)強(qiáng)度偏強(qiáng)、脊線偏北,其南側(cè)偏東氣流與越赤道氣流交匯形成的西北太平洋熱帶輻合帶偏強(qiáng)偏北、向東延伸,為TC生成創(chuàng)造了低層強(qiáng)的輻合、高層強(qiáng)的輻散、小的風(fēng)速垂直切變以及對流層中層充足的水汽等有利的大尺度環(huán)境條件,導(dǎo)致TC生成頻次異常偏多、生成位置偏北偏東。采用EOF方法進(jìn)行分析,發(fā)現(xiàn)11月東亞大槽年際變化的第二模態(tài)為南北反位相型分布,對應(yīng)的第二特征向量(PC2)與WPSH脊線指數(shù)具有高度一致性,且與同期西北太平洋上空TC生成頻數(shù)呈顯著的正相關(guān)關(guān)系。即當(dāng)11月東亞大槽北部加深而南部變淺時,對應(yīng)WPSH脊線偏北,TC生成頻數(shù)偏多,表明深秋季節(jié)西風(fēng)帶槽脊活動對西北太平洋TC生成有一定的調(diào)制作用。進(jìn)一步的診斷分析揭示了北太平洋海溫異常可能是造成東亞大槽經(jīng)向偶極子型變異的重要因子。 |
| Based on the tropical cyclone (TC) data from CMA, NCEP-DOE reanalysis and HadISST datasets, this study investigates the possible reason for the above-normal tropical cyclogenesis frequency over the western North Pacific (WNP) in November 2019. The intensity of the western Pacific subtropical high (WPSH) is found to be much stronger with the ridge line shifting northward in November 2019. The related WNP monsoon trough tends to be intensified, move northward and extend eastward, accompanied by the enhanced lower-level convergence, stronger upper-level divergence, weaker vertical zonal wind shear and a positive mid-level relative humidity anomaly in the tropical western-central Pacific, which favors the increased tropical cyclogenesis frequency in the WNP. The EOF analysis reveals that the second mode of the annual variations of East Asian trough (EAT) is a meridional dipole distribution. The corresponding second eigenvectors are in high consistency with the WPSH ridge index and in significantly positive correlation with the TC genesis frequency during November of 1979-2019, suggesting the modulation effect of the extra-tropical circulation on the WNP TC genesis. Further examinations indicate that the meridional dipole pattern of the EAT may be attributed to the anomalous SST over the North Pacific. |
|
參考文獻(xiàn):
|
[1] 黃榮輝, 皇甫靜亮, 武亮, 等. 關(guān)于西北太平洋季風(fēng)槽年際和年代際變異及其對熱帶氣旋生成影響和機(jī)理的研究[J]. 熱帶氣象學(xué)報(bào), 2016, 32(6):767-785. [2] 陳聯(lián)壽, 丁一匯. 西太平洋臺風(fēng)概論[M]. 北京:科學(xué)出版社, 1979:491. [3] 曹劍, 吳立廣, 潘維玉. 2006年7-9月西北太平洋熱帶氣旋季節(jié)活動的數(shù)值模擬[J]. 大氣科學(xué)學(xué)報(bào), 2012, 35(2):148-162. [4] 馮濤, 沈新勇, 黃榮輝, 等. 熱帶西太平洋越赤道氣流的年際變化對西北太平洋熱帶氣旋生成的影響[J]. 熱帶氣象學(xué)報(bào), 2014, 30(1):11-22. [5] CAO X, CHEN S F, CHEN G H, et al. On the weakened relationship between spring Arctic Oscillation and following summer tropical cyclone frequency over the western North Pacific:a comparison between 1968-1986 and 1989-2007[J]. Advances in Atmospheric Sciences, 2015, 32(10):1319-1328. [6] 馮濤, 黃榮輝, 楊修群, 等. 2004年與2006年7~9月西北太平洋上空大尺度環(huán)流場與天氣尺度波動的差別及其對熱帶氣旋生成的影響[J]. 大氣科學(xué), 2016, 40(1):157-175. [7] 張翔, 武亮, 皇甫靜亮, 等. 西北太平洋季風(fēng)槽的季節(jié)和年際變化特征及其與熱帶氣旋生成大尺度環(huán)境因子的聯(lián)系[J]. 氣候與環(huán)境研究, 2017, 22(4):418-434. [8] Huang R H, Huangfu J L, Wu L, et al. Research on the interannual and interdecadal variabilities of the monsoon trough and their impacts on tropical cyclone genesis over the western North Pacific ocean[J]. Journal of Tropical Meteorology, 2018, 24(4):395-420. [9] 周群, 張潤宇. 2017年7月西北太平洋熱帶氣旋活動特征及其與北極濤動的聯(lián)系[J]. 海洋預(yù)報(bào), 2018, 35(4):1-7. [10] 周群, 魏立新. 兩類ENSO與IOD對西北太平洋季風(fēng)槽及熱帶氣旋生成的影響[C]//中國海洋學(xué)會2019海洋學(xué)術(shù)(國際)雙年會論文集. 三亞:中國海洋學(xué)會, 2019. [11] Zhou Q, Chen W. Unstable relationship between spring NAO and summer tropical cyclone genesis frequency over the western North Pacific[J]. Acta Oceanologica Sinica, 2020, 39(5):65-76. [12] 吳彥潔, 黃菲, 許士斌, 等. 秋季西北太平洋熱帶氣旋累積能量的年際變化及其預(yù)報(bào)[J]. 海洋氣象學(xué)報(bào), 2018, 38(4):19-27. [13] Zhou Q, Wei L X, Zhang R Y. Influence of Indian Ocean Dipole on tropical cyclone activity over western North Pacific in boreal autumn[J]. Journal of Ocean University of China, 2019, 18(4):795-802. [14] 朱賽智, 孟祥鳳. 兩類El Niño Modoki事件時西北太平洋秋季熱帶氣旋生成地的差異[J]. 海洋環(huán)境科學(xué), 2015, 34(2):255-260. [15] Wu M C, Chang W L, Leung W M. Impacts of El Niño-Southern Oscillation events on tropical cyclone landfalling activity in the western North Pacific[J]. Journal of Climate, 2004, 17(6):1419-1428. [16] Li C Y. Interaction between anomalous winter monsoon in East Asia and EI Nino events[J]. Advances in Atmospheric Sciences, 1990, 7(1):36-46. [17] Trenberth K E, Hurrell J W, Stepaniak D P. The Asian monsoon:global perspectives[M]//Wang B. The Asian Monsoon. Berlin:Springer, 2006:67-87. [18] Wang L, Wang L. Impact of the East Asian winter monsoon on tropical cyclone genesis frequency over the South China Sea[J]. International Journal of Climatology, 2020, 40(2):1328-1334. [19] Kanamitsu M, Ebisuzaki W, Woollen J, et al. NCEP-DOE AMIPII Reanalysis (R-2)[J]. Bulletin of the American Meteorological Society, 2002, 83(11):1631-1644. [20] Chen G H, Huang R H. Influence of monsoon over the warm pool on interannual variation on tropical cyclone activity over the western North Pacific[J]. Advances in Atmospheric Sciences, 2008, 25(2):319-328. [21] 曹西, 陳光華, 黃榮輝, 等. 夏季西北太平洋熱帶輻合帶的強(qiáng)度變化特征及其對熱帶氣旋的影響[J]. 熱帶氣象學(xué)報(bào), 2013, 29(2):198-206. [22] Li C F, Lu R Y, Chen G H. Promising prediction of the monsoon trough and its implication for tropical cyclone activity over the western North Pacific[J]. Environmental Research Letters, 2017, 12(7):074027. [23] Feng T, Chen G H, Huang R H, et al. Large-scale circulation patterns favourable to tropical cyclogenesis over the western North Pacific and associated barotropic energy conversions[J]. International Journal of Climatology, 2014, 34(1):216-227. [24] Wang L, Chen W, Zhou W, et al. Interannual variations of East Asian trough axis at 500 hPa and its association with the East Asian winter monsoon pathway[J]. Journal of Climate, 2009, 22(3):600-614. |
|
服務(wù)與反饋:
|
|
【文章下載】【發(fā)表評論】【查看評論】【加入收藏】
|
|
|