| 非對稱風場對臺風浪模擬效果的比較研究 |
| 作者:吳彥1 趙紅軍1 葉榮輝2 孫杰1 孔俊1 |
單位:1. 江蘇省海岸海洋資源開發(fā)與環(huán)境安全重點實驗室 河海大學, 江蘇 南京 210098; 2. 珠江水利委員會珠江水利科學研究院, 廣東 廣州 510611 |
| 關(guān)鍵詞:非對稱臺風場 臺風浪 數(shù)值模擬 |
| 分類號:P731.33 |
|
| 出版年·卷·期(頁碼):2020·37·第一期(55-61) |
|
摘要:
|
| 分析四象限非對稱風場模型與疊加風場模型的優(yōu)缺點,將模型結(jié)果與實測風速進行對比驗證;利用上述兩種風場模型分別驅(qū)動第三代海浪模式SWAN,對發(fā)生在南海海域的三場臺風浪進行了數(shù)值模擬計算。結(jié)果顯示:四象限非對稱模型關(guān)于風速的計算值與實測值吻合度更高,尤其是當臺風中心距離測站較近時;四象限非對稱模型驅(qū)動SWAN模擬的臺風浪精度優(yōu)于疊加風場模型,適用于南海臺風浪的數(shù)值模擬。 |
| We analyze the advantages and disadvantages of the four-quadrant asymmetric wind model and the superimposed wind model by comparing the numerical results with observations. The two wind models are used to drive the third-generation wave model SWAN to simulate the typhoon waves of three typhoon events in the South China Sea. The results show that the wind speed of the four-quadrant asymmetric wind model coincides better with observations, especially when the typhoon center is close to the observation stations.. The accuracy of typhoon waves driven by the four-quadrant asymmetric model is better than that of the superimposed wind model. As a result, the four-quadrant asymmetric wind field model is more suitable for the numerical simulation of typhoon waves in the South China Sea. |
|
參考文獻:
|
[1] Walsh K J E, Mcbride J L, Klotzbach P J, et al. Tropical cyclones and climate change[J]. Wiley Interdisciplinary Reviews:Climate Change, 2016, 7(1):65-89. [2] Wei C, Caracoglia L. Exploring hurricane wind speed along US Atlantic coast in warming climate and effects on predictions of structural damage and intervention costs[J]. Engineering Structures, 2016, 122:209-225. [3] 胡邦輝, 譚言科, 張學敏. 海面熱帶氣旋域內(nèi)風速分布[J]. 大氣科學, 1999, 23(3):316-322. [4] Myers V A. Characteristics of United States hurricanes pertinent to levee design for lake okeechobee, Florida[R]. Hydrometeorological Report No. 32.Washington DC:Government Press, 1954. [5] Jelesnianski C P. A numerical calculation of storm tides induced by a tropical storm impinging on a continental shelf[J]. Monthly Weather Review, 1965, 93(6):343-358. [6] Holland G J. An analytic model of the wind and pressure profiles in hurricanes[J]. Monthly Weather Review, 1980, 108(8):1212-1218. [7] Olfateh M, Callaghan D P, Nielsen P, et al. Tropical cyclone wind field asymmetry-development and evaluation of a new parametric model[J]. Journal of Geophysical Research, 2017, 122(1):458-469. [8] Vickery P J, Wadhera D. Statistical models of Holland pressure profile parameter and radius to maximum winds of hurricanes from flight-level pressure and H*wind data[J]. Journal of Applied Meteorology and Climatology, 2008, 47(10):2497-2517. [9] 林偉, 方偉華. 西北太平洋臺風風場模型中Holland B系數(shù)區(qū)域特征研究[J]. 熱帶地理, 2013, 33(2):124-132. [10] Miyazaki M, Ueno T, Unoki S. Theoretical investigations of typhoon surges along the Japanese coast (II)[J]. Oceanographical Magazine, 1961, 13(2):103-118. [11] Xie L, Bao S W, Pietrafesa L J, et al. A real-time hurricane surface wind forecasting model:formulation and verification[J]. Monthly Weather Review, 2006, 134(5):1355-1370. [12] Booij N, Ris R C, Holthuijsen L H. A third-generation wave model for coastal regions:1. Model description and validation[J]. Journal of Geophysical Research, 1999, 104(C4):7649-7666. [13] Rogers W E, Hwang P A, Wang D W. Investigation of wave growth and decay in the SWAN model:Three regional-scale application[J]. Journal of Physical Oceanography, 2003, 33(2):366-389. |
|
服務(wù)與反饋:
|
|
【文章下載】【發(fā)表評論】【查看評論】【加入收藏】
|
|
|