| 耦合模式中海浪參數(shù)對臺風浪預報的影響研究 |
| 作者:丁維煒1 齊琳琳2 趙文斌3 劉潮4 趙金波5 孫苗芯6 |
單位:1. 95171部隊氣象臺, 廣東 廣州 510000; 2. 空軍研究院, 北京 100085; 3. 61741部隊, 北京 100094; 4. 75839部隊, 廣東 廣州 510000; 5. 61255部隊氣象臺, 山西 侯馬 043000; 6. 武警第二機動總隊直升機支隊湘陰場站, 湖南 長沙 410200 |
| 關鍵詞:中尺度海氣浪耦合模式 臺風浪 海浪參數(shù)化 |
| 分類號:P731.33 |
|
| 出版年·卷·期(頁碼):2019·36·第一期(37-51) |
|
摘要:
|
| 以西北太平洋一次“雙臺風”共同影響下的臺風浪為例,針對模式中風攝入和白帽耗散、底摩擦、波破碎、波-波非線性相互作用等海浪物理過程對臺風浪預報的影響進行了敏感性試驗分析。在此基礎上,基于各物理過程最優(yōu)參數(shù)化方案探討了耦合模式和單獨海浪模式的海浪預報性能,分析了耦合模式的海浪預報場分布特征。結果表明:不同海浪物理過程參數(shù)化對于波高預報的準確性是有所差異的。在相對最優(yōu)的海浪各參數(shù)化方案組合下,無論耦合模式還是單獨海浪模式都能較好地反映波高的變化和分布趨勢。相比而言,耦合模式對于臺風浪大值區(qū)的浪高預報要比單獨海浪模式的更接近觀測,且可以很好地刻畫出雙臺風影響下浪的分布演變特征,對于西太平洋臺風浪的預報具有很好的適用性。 |
| Based on the simulation of binary typhoons over the northwestern Pacific Ocean, a serie of sensitivity experiments are conducted to study the parametric effects of wave physical processes on typhoon wave forecast, such as wind energy input, white capping, bottom friction, depth-induced wave breaking, and nonlinear wave interactions. We also discuss the forecast skill of coupled model and individual wave model based on optimal parameterization scheme of each process, and analyze the characteristics of ocean wave in coupled model. It is shown that the accuracy of wave height forecast varies among the parameterization of different wave physical processes. Both coupled model and individual wave model can reasonably depict the wave height variation and distribution under a combination of the relatively optimal wave parameterization schemes. It is found that the coupled mode can better characterize the distribution and evolution of binary typhoon wave, and predict the wave height with more accuracy over the high wave areas of binary typhoons compared to individual wave model. The study demonstrates good applicability of coupled model in forecasting typhoon wave over the northwestern Pacific Ocean. |
|
參考文獻:
|
[1] 梁小力, 王毅. 基于SWAN模式的全球有效波高數(shù)值預報結果之初步驗證[J]. 海洋預報, 2015, 32(6):1-9. [2] Group T W. The WAM model-a third generation ocean wave prediction model[J]. Journal of Physical Oceanography, 1988, 18(12):1775-1810. [3] 張洪生, 辜俊波, 王海龍, 等. 利用WAVEWATCH和SWAN嵌套計算珠江口附近海域的風浪場[J]. 熱帶海洋學報, 2013, 32(1):8-17. [4] 李燕, 薄兆海. SWAN模式對黃渤海海域浪高的模擬能力試驗[J]. 海洋預報, 2005, 22(3):75-82. [5] Huang Y, Weisberg R H, Zheng L Y, et al. Gulf of Mexico hurricane wave simulations using SWAN:bulk formula-based drag coefficient sensitivity for hurricane Ike[J]. Journal of Geophysical Research:Oceans, 2013, 118(8):3916-3938. [6] 梁書秀, 孫昭晨, 尹洪強, 等. 基于SWAN模式的南海臺風浪推算的影響因素分析[J]. 海洋科學進展, 2015, 33(1):19-30. [7] 陳子, 焱木. 水東灣落潮三角洲海區(qū)底摩擦對波浪變形的作用[J]. 中山大學學報(自然科學版), 1996, 35(S1):285-291. [8] 應王敏, 鄭橋, 朱陳陳, 等. 基于SWAN模式的"燦鴻"臺風浪數(shù)值模擬[J]. 海洋科學, 2017, 41(4):108-117. [9] Kalantzi G D, Gommenginger C, Srokosz M. Assessing the performance of the dissipation parameterizations in WAVEWATCH Ⅲ using collocated altimetry data[J]. Journal of Physical Oceanography, 2010, 39(11):2800-2819. [10] Warner J C, Armstrong B, He R Y, et al. Development of a coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system[J]. Ocean Modelling, 2010, 35(3):230-244. [11] Liu B, Liu H Q, Xie L, et al. A coupled atmosphere-wave-ocean modeling system:simulation of the intensity of an idealized tropical cyclone[J]. Monthly Weather Review, 2010, 139(1):132-152. [12] 關皓, 周林, 薛彥廣, 等. 南海中尺度大氣-海流-海浪耦合模式的建立及應用[J]. 熱帶氣象學報, 2012, 28(2):211-218. [13] 丁亞梅, 董克慧, 周林, 等. 大氣-海浪耦合模式對臺風"碧利斯" 的數(shù)值模擬[J]. 海洋預報, 2009, 26(2):15-26. [14] 關皓, 周林, 史堯, 等. 利用jason-1資料驗證區(qū)域海氣耦合模式模擬臺風浪的有效性[J]. 海洋預報, 2009, 26(1):84-93. [15] Zhang J F, Huang L W, Wen Y Q, et al. A distributed coupled atmosphere-wave-ocean model for typhoon wave numerical simulation[J]. International Journal of Computer Mathematics, 2009, 86(12):2095-2103. [16] 詹思玙, 齊琳琳, 盧偉, 等. 基于區(qū)域海氣浪耦合模式的海洋風場預報性能研究[J]. 海洋預報, 2017, 34(6):16-26. [17] Mulligan R P, Bowen A J, Hay A E, et al. Whitecapping and wave field evolution in a coastal bay[J]. Journal of Geophysical Research:Oceans, 2008, 113(C3):C03008. [18] Miles J W. On the generation of surface waves by shear flows. IV. [J]. Journal of Fluid Mechanics, 1962, 13:433-448. [19] Janssen P A E M. Wave-induced stress and the drag of air flow over sea waves[J]. Journal of Physical Oceanography, 1989, 19(6):745-754. [20] Komen G J, Hasselmann K, Hasselmann K. On the existence of a fully developed wind-sea spectrum[J]. Journal of Physical Oceanography, 1984, 14(8):1271-1285. [21] Snyder R L, Dobson F W, Elliott J A, et al. Array measurements of atmospheric pressure fluctuations above surface gravity waves[J]. Journal of Fluid Mechanics, 1981, 102:1-59. [22] 陳希, 閔錦忠, 沙文鈺, 等. 近岸海浪模式在中國東海臺風浪模擬中的應用——數(shù)值模擬及物理過程研究[J]. 海洋通報, 2003, 22(2):9-16. [23] Hasselmann K, Barnett T P, Bouws E, et al. Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP)[J]. Deutsche Hydrographische Zeitschrift, 1973, A8(12):95. [24] Booij N, Ris R C, Holthuijsen L H. A third-generation wave model for coastal regions:1. model description and validation[J]. Journal of Geophysical Research:Oceans, 1999, 104(C4):7649-7666. [25] Madsen O S, Poon Y K, Graber H C. Spectral wave attenuation by bottom friction:theory[C]//Proceedings of the 21st international conference on coastal engineering. ASCE, 1988:492-504. [26] 趙凱, 欒曙光, 張瑞瑾. 強臺風"珍珠"引起的近岸波浪場數(shù)值分析[J]. 海洋預報, 2011, 28(4):35-42. [27] Kaminsky G M, Kraus N C. Evaluation of depth-limited wave breaking criteria[C]//Proceedings of 2nd international symposium on ocean wave measurements and analysis. New Orleans:ASCE, 1993:180-193. [28] 趙棟梁. 非線性相互作用對高頻方向譜估計的影響[J]. 青島海洋大學學報, 1998, 28(4):531-535. [29] 羅浩. SWAN模式渤海灣海浪數(shù)值模擬研究[D]. 天津:天津大學, 2012. [30] Hwang P A, Teague W J, Jacobs G A. Spaceborne measurements of kuroshio modification of wind and wave properties in the Yellow and East China Seas[J]. Journal of Advanced Marine Science and Technology Society, 2000, 4(2):155-164. [31] 劉娜, 李本霞, 王輝, 等. 西北太平洋浪流相互作用對有效波高的影響研究[J]. 海洋學報, 2016, 38(9):21-31. |
|
服務與反饋:
|
|
【文章下載】【發(fā)表評論】【查看評論】【加入收藏】
|
|
|