首頁(yè)期刊介紹通知公告編 委 會(huì)投稿須知電子期刊廣告合作聯(lián)系我們在線留言
 
一次冬季浙北入海雷暴天氣診斷模擬分析
作者:馬晨1 2  李超1  陳宇霄3  劉安寧1  劉英明4  蔣義芳1 
單位:1. 江蘇省氣象臺(tái), 江蘇 南京 210019;
2 中國(guó)氣象局交通氣象重點(diǎn)開(kāi)放實(shí)驗(yàn)室, 江蘇 南京 210019;
3. 南京信息工程大學(xué), 江蘇南京 210044;
4. 北京華云通合科技發(fā)展有限公司, 北京 100081
關(guān)鍵詞:雷暴 WRF-ARW模式 熱力差異 地形 
分類(lèi)號(hào):P732
出版年·卷·期(頁(yè)碼):2025·42·第四期(85-93)
摘要:
利用多普勒天氣雷達(dá)資料、地面觀測(cè)和區(qū)域自動(dòng)站資料、探空資料、ERA5逐小時(shí)再分析資料(水平分辨率0.25°×0.25°)以及WRF-ARW數(shù)值模式,對(duì)2019年2月26日發(fā)生在浙北沿海的一次冬季雷暴過(guò)程進(jìn)行了分析。結(jié)果表明:此次雷暴過(guò)程受地面的冷高壓和中低層的暖濕氣流共同影響,近地面層有明顯的冷墊,層結(jié)較為穩(wěn)定,以下沉運(yùn)動(dòng)為主;而中低層存在逆溫層結(jié),有較好的動(dòng)力和水汽條件,以上升運(yùn)動(dòng)為主;此次雷暴過(guò)程是從邊界層頂發(fā)展維持的,是一次高架雷暴;中低層的逆溫層為此次高架雷暴的發(fā)生和發(fā)展提供了重要的溫度層結(jié)條件。模式能夠較好地重現(xiàn)本次冬季高架雷暴的發(fā)生—發(fā)展—入海減弱—消亡的過(guò)程。敏感試驗(yàn)表明:高架雷暴入海后,浙東海面的地形有利于雷暴回波的維持。更高的海面溫度使得低層大氣更加不穩(wěn)定,破壞了逆溫層結(jié),使得高架雷暴入海后難以維持,這可能是此次冬季高架雷暴入海減弱的原因之一。
Based on Doppler weather radar data, surface observations, ERA5 hourly reanalysis data(with a horizontal resolution of 0.25°×0.25°), and the WRF-ARW numerical model, an analysis was conducted on a winter thunderstorm event along the northern coast of Zhejiang that occurred on February 26, 2019. The results showed that this thunderstorm process was influenced by the surface cold high pressure and warm moist airflow at the middle and lower levels. There was a significant cold pool near the surface, with relatively stable stratification and dominant subsidence. In contrast, the middle and lower levels exhibited an inversion layer with favorable dynamic and moisture conditions, characterized by dominant upward motion. This thunderstorm developed and maintained from the top of the boundary layer, making it an elevated thunderstorm. The inversion layer in the middle and lower levels provided crucial thermal stratification condition for the development of this elevated thunderstorm. The WRF model was able to accurately reproduce the occurrence, development, weakening, and dissipation of this winter elevated thunderstorm. Sensitivity experiments showed that after the elevated thunderstorm moved over the sea, the terrain of the eastern Zhejiang sea area was conducive to the maintenance of thunderstorm. Higher sea surface temperature made the lower atmosphere more unstable disrupting the inversion layer and the elevated thunderstorm. This could be one of the reasons for the weakening of this winter elevated thunderstorm after it moved over the sea.
參考文獻(xiàn):
[1] 陳思蓉,朱偉軍,周兵.中國(guó)雷暴氣候分布特征及變化趨勢(shì)[J]. 大氣科學(xué)學(xué)報(bào), 2009, 32(5):703-710.CHEN S R, ZHU W J, ZHOU B. Climate characteristic and variation tendency of thunderstorm in China[J]. Transactions of Atmospheric Sciences, 2009, 32(5):703-710.
[2] 張恒進(jìn),鄭永光.基于逐時(shí)觀測(cè)的1971-2010年中國(guó)大陸雷暴氣候特征[J]. 氣象學(xué)報(bào), 2022, 80(1):54-66.ZHANG H J, ZHENG Y G. Thunderstorm climatology over China's mainland based on hourly observations during 1971-2010[J]. Acta Meteorologica Sinica, 2022, 80(1):54-66.
[3] 王婷波,周康輝,鄭永光.我國(guó)中東部雷暴活動(dòng)特征分析[J]. 氣象, 2020, 46(2):189-199.WANG T B, ZHOU K H, ZHENG Y G. Statistic analysis of thunderstorm characteristics in central and eastern China[J]. Meteorological Monthly, 2020, 46(2):189-199.
[4] 周鑫,張文娟,張義軍,等.基于閃電聚類(lèi)方法的西北太平洋區(qū)域雷暴活動(dòng)特征[J]. 熱帶氣象學(xué)報(bào), 2021, 37(3):490-501.ZHOU X, ZHANG W J, ZHANG Y J, et al. Characteristics of thunderstorm activity in the Northwest Pacific based on lightning clustering method[J]. Journal of Tropical Meteorology, 2021, 37(3):490-501.
[5] 鄭棟,張文娟,姚雯,等.雷暴閃電活動(dòng)特征研究進(jìn)展[J]. 熱帶氣象學(xué)報(bào), 2021, 37(3):289-297.ZHENG D, ZHANG W J, YAO W, et al. Research progress of lightning activity in thunderstorms[J]. Journal of Tropical Meteorology, 2021, 37(3):289-297.
[6] COLMAN B R. Thunderstorms above frontal surfaces in environments without positive CAPE. PartⅡ:Organization and instability mechanisms[J]. Monthly Weather Review, 1990, 118(5):1123-1144.
[7] OSTBY F P. Improved accuracy in severe storm forecasting by the severe local storms unit during the last 25 years:Then versus now[J]. Weather and Forecasting, 1999, 14(4):526-543.
[8] 閆文輝,黃興友,趙鈺錦,等.基于改進(jìn)DBSCAN聚類(lèi)算法的雷暴單體三維結(jié)構(gòu)識(shí)別技術(shù)介紹[J]. 熱帶氣象學(xué)報(bào), 2020, 36(4):542-551.YAN W H, HUANG X Y, ZHAO Y J, et al. Introduction of 3D structure detection technology of thunderstorm cell based on improved DBSCAN clustering algorithm[J]. Journal of Tropical Meteorology, 2020, 36(4):542-551.
[9] YANG J, ZHAO K, CHEN X C, et al. Subseasonal and diurnal variability in lightning and storm activity over the Yangtze River Delta, China, during Mei-yu season[J]. Journal of Climate, 2020, 33(12):5013-5033.
[10] 賀靚,于超,呂新民,等.渤海中南部海區(qū)一次雷暴大風(fēng)過(guò)程分析[J]. 海洋預(yù)報(bào), 2011, 28(1):19-24.HE L, YU C, LYU X M, et al. Analysis of a thunderstorm gale process in the south-central Bohai Sea[J]. Marine Forecasts, 2011,28(1):19-24.
[11] 宋曉姜,邢建勇,王彰貴.渤海一次強(qiáng)陣性雷雨大風(fēng)過(guò)程的診斷分析[J]. 海洋預(yù)報(bào), 2013, 30(2):22-29.SONG X J, XING J Y, WANG Z G. A strong convection weather in the Bohai Sea[J]. Marine Forecasts, 2013, 30(2):22-29.
[12] KEENAN T D, FERRIER B, SIMPSON J. Development and structure of a maritime continent thunderstorm[J]. Meteorology and Atmospheric Physics, 1994, 53(3):185-222.
[13] JAYAKRISHNAN P R, SIVAPRASAD P, CHENOLI S N, et al.Sea breeze characteristics over a coastal station in peninsular Malaysia[J]. Journal of Earth System Science, 2021, 130(3):126.
[14] 胡文東,楊侃,文小航,等.陣風(fēng)鋒差異及強(qiáng)迫作用對(duì)雷暴觸發(fā)影響的模擬分析[J]. 高原氣象, 2021, 40(4):773-788.HU W D, YANG K, WEN X H, et al. Stimulation analysis on differences and force effects of gust fronts in a severe convection trigging process[J]. Plateau Meteorology, 2021, 40(4):773-788.
[15] 汪雅,苗峻峰,談?wù)苊?寧波地區(qū)海-陸下墊面差異對(duì)雷暴過(guò)程影響的數(shù)值模擬[J]. 氣象學(xué)報(bào), 2013, 71(6):1146-1159.WANG Y, MIAO J F, TAN Z M. Numerical study of the impact of differences between sea and land underlying surface on thunderstorm in the Ningbo area[J]. Acta Meteorologica Sinica,2013, 71(6):1146-1159.
[16] HONG S Y, LIM J J O. The WRF single-moment 6-class microphysics scheme(WSM6)[J]. Journal of the Korean Meteorological Society, 2006, 42(2):129-151.
[17] KAIN J S, FRITSCH J M. Convective parameterization for mesoscale models:The Kain-Fritsch scheme[M] //EMANUEL K A,RAYMOND D J. The Representation of Cumulus Convection in Numerical Models. Boston:American Meteorological Society,1993:165-170.
服務(wù)與反饋:
文章下載】【發(fā)表評(píng)論】【查看評(píng)論】【加入收藏
 
 海洋預(yù)報(bào)編輯部 地址:北京海淀大慧寺路8號(hào) 電話:010-62105776
投稿網(wǎng)址:http://familyfy.cn
郵箱:bjb@nmefc.cn
本系統(tǒng)由北京博淵星辰網(wǎng)絡(luò)科技有限公司設(shè)計(jì)開(kāi)發(fā) 技術(shù)支持電話:010-63361626
洞口县| 英德市| 汪清县| 韩城市| 南漳县| 荆门市| 鹤岗市| 抚顺县| 鄢陵县| 香河县| 六盘水市| 老河口市| 明水县| 安顺市| 沛县| 京山县| 双牌县| 边坝县| 开化县| 桐城市| 马边| 古田县| 渭源县| 温宿县| 姜堰市| 黄龙县| 宜州市| 山阳县| 和林格尔县| 子长县| 潍坊市| 温宿县| 台南市| 巴马| 陆良县| 三门县| 内丘县| 株洲市| 政和县| 利津县| 九龙城区|