| 舟山一次由脈沖風暴引起的下?lián)舯┝骼妆┐箫L成因分析 |
| 作者:潘琳1 黃新晴2 韓永翔3 徐逸雯1 王倩1 |
單位:1. 舟山市氣象局, 浙江 舟山 316000; 2. 浙江省氣象臺, 浙江 杭州 310000; 3. 南京信息工程大學氣象災害預報預警與評估協(xié)同創(chuàng)新中心, 中國氣象局氣溶膠-云-降水重點開放實驗室, 江蘇 南京 210044 |
| 關鍵詞:脈沖風暴 下?lián)舯┝?/a> 雷暴大風 密度流 |
| 分類號:P732 |
|
| 出版年·卷·期(頁碼):2025·42·第四期(74-84) |
|
摘要:
|
| 利用地面加密自動站逐小時資料、多普勒天氣雷達探測資料、FY-4A可見光云圖以及ERA5再分析等資料,對2022年7月17日發(fā)生在舟山市的一次下?lián)舯┝鬟^程進行診斷分析。結(jié)果表明:本次過程發(fā)生在弱垂直風切變和強熱力不穩(wěn)定環(huán)境中,自由對流高度較低,使得寧波—舟山一帶出現(xiàn)脈沖風暴;云街代表當?shù)卮嬖谌醮怪憋L切變和一定的水汽條件,對脈沖風暴具有指示意義,脈沖風暴強烈發(fā)展引發(fā)下?lián)舯┝鳎瓷渎室蜃雍诵膹? km高度快速下降到地面后在舟山島西側(cè)形成地面輻合線,使得風暴東移加強;降水粒子在下降至900 hPa后蒸發(fā)降溫,在加強下沉氣流的同時,也在地面形成了中心氣溫低于26℃的冷池,并產(chǎn)生冷池密度流,與單體下沉輻散氣流疊加后造成了9~11級的雷暴大風。 |
| Based on the hourly data from automatic weather stations, Doppler weather radar data, FY-4A visible satellite imagery and ERA5 reanalysis data, a downburst thunderstorm event occurred in Zhoushan on 17 July 2022 is analyzed. The results show that this event occurs in weak vertical wind shear and strong thermal instability environment with lower free convection height, resulting in pulse thunderstorm from Ningbo to Zhoushan. The cloud street reveals the existence of weak vertical wind shear and certain water vapor condition in the area suggesting the appearance of pulse thunderstorm. Strong development of the pulse thunderstorm triggers downburst. The reflectivity factor core rapidly descends from a height of 7 km to the ground, and forms a surface convergence line in the western Zhoushan, which strengthens the storm along with the eastward movement. The precipitation particles evaporate after falling to 900 hPa, which causes the air cooling, and a cold pool with central temperature lower than 24 ℃ is formed on the ground, generating density flow in the cold pool. The sinking divergent airflow superimposing the density flow causes thunderstorm gale of grade 9~11. |
|
參考文獻:
|
[1] 俞小鼎,姚秀萍,熊廷南,等.多普勒天氣雷達原理與業(yè)務應用[M]. 北京:氣象出版社, 2006:102-103.YU X D, YAO X P, XIONG T N, et al. Principles and business applications of Doppler weather radar[M]. Beijing:China Meteorological Press, 2006:102-103. [2] FUJITA T T, BYERS H R. Spearhead echo and downburst in the crash of an airliner[J]. Monthly Weather Review, 1977, 105(2):129-146. [3] FUJITA T T. The downburst:microburst and macroburst, report of projects NIMROD and JAWS/T. Theodore Fujita[R]. Chicago:University of Chicago, 1985:1-122. [4] WAKIMOTO R M. Forecasting dry microburst activity over the high plains[J]. Monthly Weather Review, 1985, 113(7):1131-1143. [5] PROCTOR F H. Numerical simulations of an isolated microburst.PartⅡ:sensitivity experiments[J]. Journal of the Atmospheric Sciences, 1989, 46(14):2143-2165. [6] MAHALE V N, ZHANG G F, XUE M. Characterization of the 14June 2011 Norman, Oklahoma, downburst through dualpolarization radar observations and hydrometeor classification[J]. Journal of Applied Meteorology and Climatology, 2016, 55(12):2635-2655. [7] 鄭永光,田付友,孟智勇,等.“東方之星”客輪翻沉事件周邊區(qū)域風災現(xiàn)場調(diào)查與多尺度特征分析[J]. 氣象, 2016, 42(1):1-13.ZHENG Y G, TIAN F Y, MENG Z Y, et al. Survey and multi-scale characteristics of wind damage caused by convective storms in the surrounding area of the capsizing accident of cruise ship“Dongfangzhixing”[J]. Meteorological Monthly, 2016, 42(1):1-13. [8] 賈旭軒,梁軍,劉曉初,等.遼東半島一次濕下?lián)舯┝鬟^程分析[J]. 高原氣象, 2024, 43(2):411-420.JIA X X, LIANG J, LIU X C, et al. Analysis of a wet downburst in the Liaodong Peninsula[J]. Plateau Meteorology, 2024, 43(2):411-420. [9] 李彩玲,蔡康龍,黃先香,等.桂林一次強下?lián)舯┝鞒梢蚍治鯷J]. 氣象, 2021, 47(2):242-252.LI C L, CAI K L, HUANG X X, et al. Cause analysis of a severe downburst in Guilin[J]. Meteorological Monthly, 2021, 47(2):242-252. [10] FUJITA T T, WAKIMOTO R M. Five scales of airflow associated with a series of downbursts on 16 July 1980[J]. Monthly Weather Review, 1981, 109(7):1438-1456. [11] POTTS R. Microburst precursors observed with Doppler radar[C] //Proceedings of the 24th Conference on Radar Meteorology.Boston:American Meteorology Society, 1989:158-162. [12] ROBERTS R D, WILSON J W. A proposed microburst nowcasting procedure using single-Doppler radar[J]. Journal of Applied Meteorology, 1989, 28(4):285-303. [13] 孫凌峰,郭學良,孫立潭,等.武漢“6·22”空難下?lián)舯┝鞯娜S數(shù)值模擬研究[J]. 大氣科學, 2003, 27(6):1077-1092.SUN L F, GUO X L, SUN L T, et al. A numerical study of the airplane disaster-producing microburst on 22 June 2000 in Wuhan[J]. Chinese Journal of Atmospheric Sciences, 2003, 27(6):1077-1092. [14] 俞小鼎,張愛民,鄭媛媛,等.一次系列下?lián)舯┝魇录亩嗥绽仗鞖饫走_分析[J]. 應用氣象學報, 2006, 17(4):385-393.YU X D, ZHANG A M, ZHENG Y Y, et al. Doppler radar analysis on a series of downburst events[J]. Journal of Applied Meteorological Science, 2006, 17(4):385-393. [15] 李根,吳福浪,鄭怡.冷渦背景下一次致災超級單體雹暴過程的數(shù)值模擬[J]. 氣象科技, 2021, 49(2):218-226.LI G, WU F L, ZHENG Y. A numerical simulation study of a supercell hailstorm under a cold vortex[J]. Meteorological Science and Technology, 2021, 49(2):218-226. [16] 王秀明,周小剛,俞小鼎.雷暴大風環(huán)境特征及其對風暴結(jié)構(gòu)影響的對比研究[J]. 氣象學報, 2013, 71(5):839-852.WANG X M, ZHOU X G, YU X D. Comparative study of environmental characteristics of a windstorm and their impacts on storm structures[J]. Acta Meteorologica Sinica, 2013, 71(5):839-852. [17] 孫繼松,戴建華,何立富,等.強對流天氣預報的基本原理與技術方法--中國強對流天氣預報手冊[M]. 北京:氣象出版社,2019:75-76.SUN J S, DAI J H, HE L F, et al. The basic principles and technical methods of severe convective weather forecasting[M]. Beijing:China Meteorological Press, 2019:75-76. [18] 鄭永光,陶祖鈺,俞小鼎.強對流天氣預報的一些基本問題[J]. 氣象, 2017, 43(6):641-652.ZHENG Y G, TAO Z Y, YU X D. Some essential issues of severe convective weather forecasting[J]. Meteorological Monthly, 2017,43(6):641-652. [19] 俞小鼎,王秀明,李萬莉,等.雷暴與強對流臨近預報[M]. 北京:氣象出版社, 2020:298-299.YU X D, WANG X M, LI W L, et al. Forecast of thunderstorms and severe convection approaching[M]. Beijing:China Meteorological Press, 2020:298-299. [20] 侯淑梅,李昱薇,張鵬,等.“4.29”山東近海10級以上雷暴大風的成因分析[J]. 氣象, 2022, 48(10):1242-1256.HOU S M, LI Y W, ZHANG P, et al. Cause of a thunderstorm gale event over grade 10 along the Shandong coast on 29 April2021[J]. Meteorological Monthly, 2022, 48(10):1242-1256. |
|
服務與反饋:
|
|
【文章下載】【發(fā)表評論】【查看評論】【加入收藏】
|
|
|