|
摘要:
|
| 對中國近海74個浮標海面風資料進行整合、質(zhì)量控制,形成了一套高度統(tǒng)一、準確可靠的浮標海面風數(shù)據(jù)集。結(jié)果表明:約80%的浮標風速數(shù)據(jù)的可疑率在5%以下,浮標海面風資料整體質(zhì)量較好。基于該數(shù)據(jù)集對中國近海各浮標不同月份的平均風速和盛行風向分布、不同海域各風向頻率及各級風速頻率進行分析發(fā)現(xiàn):中國近海1月、4月、7月、10月的平均風速、盛行風向分布有明顯差別;8個不同海域的浮標1月偏北風頻率較高,7月偏南風頻率較高;渤海—臺灣海峽北部的風速峰值逐漸增大,臺灣海峽南部浮標的風速頻率呈現(xiàn)“雙峰型”特征,南海南部浮標比南海西北部浮標的風速頻率分布稍陡峭,北部灣浮標的風速在4~5 m/s、8~9 m/s的頻率最高。 |
| Based on the multi-source integration and quality control of the sea surface wind data of 74 buoys in China’ offshore areas, a set of highly unified, accurate and reliable sea surface wind data is formed. The results show that the suspicious rate of wind speed data is less than 5% in 80% of all buoy stations and the overall quality of buoy surface wind data is good. Based on the data set, the mean wind speed and prevailing wind direction distribution of each buoy in different months, the frequency of each wind direction and wind speed frequency of each level in different sea areas are analyzed. It is found that the mean wind speed and prevailing wind direction distribution in January, April, July and October are significantly different in China’s offshore areas. The frequencies of northerly winds in January and southerly winds in July are high for eight buoys in different sea areas. The peak wind speed increases gradually from the Bohai Sea to the northern Taiwan Strait; The wind speed frequency of the buoy in the southern Taiwan Strait shows a "double peak" characteristic. The wind speed frequency distribution of the buoy in the southern South China Sea is slightly steeper than that in the northwestern South China Sea, and the wind speed frequency of the buoy in the Beibu Gulf peak at ranges of 4~5 m/s and 8~9 m/s. |
|
參考文獻:
|
[1] 閻俊岳,陳乾金,張秀芝,等.中國近海氣候[M]. 北京:科學(xué)出版社, 1993.YAN J Y, CHEN Q J, ZHANG X Z, et al. Offshore climate of China[M]. Beijing:Science Press, 1993. [2] 柳婧,宋曉姜,王彰貴.中國近海ASCAT和ERA-Interim風場資料的評估[J]. 海洋預(yù)報, 2019, 36(1):10-19.LIU J, SONG X J, WANG Z G. Evaluation of ASCAT and ERAInterim wind data over China offshore seas[J]. Marine Forecasts,2019, 36(1):10-19. [3] 金鑄鈺,劉凱,郭安博宇,等.基于CCMP的西北太平洋海面風場特征分析[J]. 海洋預(yù)報, 2022, 39(2):20-33.JIN Z Y, LIU K, GUO A B Y, et al. Characteristics analysis of the sea surface wind in the Northwest Pacific based on CCMP satellite data[J]. Marine Forecasts, 2022, 39(2):20-33. [4] MONAHAN A H. The temporal autocorrelation structure of sea surface winds[J]. Journal of Climate, 2012, 25(19):6684-6700. [5] TOKINAGA H, XIE S P. Wave-and anemometer-based sea surface wind(WASWind)for climate change analysis[J]. Journal of Climate, 2011, 24(1):267-285. [6] LI M, LIU J P, WANG Z Z, et al. Assessment of sea surface wind from NWP reanalyses and satellites in the Southern Ocean[J]. Journal of Atmospheric and Oceanic Technology, 2013, 30(8):1842-1853. [7] WANG J L, DESKOS G, PRINGLE W J, et al. Impact of tropical and extratropical cyclones on future U.S. offshore wind energy[J]. Bulletin of the American Meteorological Society, 2024, 105(8):E1506-E1513. [8] WANG J C, WANG Z Q, WANG Y M, et al. Current situation and trend of marine data buoy and monitoring network technology of China[J]. Acta Oceanologica Sinica, 2016, 35(2):1-10. [9] 蔡曉杰,戴建華,朱智慧,等.上海沿岸海域風場質(zhì)量控制與預(yù)報檢驗[J]. 氣象科技, 2019, 47(2):214-221.CAI X J, DAI J H, ZHU Z H, et al. Quality control and forecast verification of wind field in coastal waters of Shanghai[J]. Meteorological Science and Technology, 2019, 47(2):214-221. [10] 張增海,曹越男,劉濤,等. ASCAT散射計風場在我國近海的初步檢驗與應(yīng)用[J]. 氣象, 2014, 40(4):473-481.ZHANG Z H, CAO Y N, LIU T, et al. Preliminary validation and application of ASCAT scatterometer retrieved winds over China offshore seas[J]. Meteorological Monthly, 2014, 40(4):473-481. [11] 任煥萍,張斌,譚哲韜,等.一種精細化的海洋浮標數(shù)據(jù)質(zhì)量控制方法[J]. 海洋科學(xué), 2021, 45(10):93-103.REN H P, ZHANG B, TAN Z T, et al. A new quality control scheme for marine buoy temperature and salinity data[J]. Marine Sciences, 2021, 45(10):93-103. [12] O'NEILL L W. Wind speed and stability effects on coupling between surface wind stress and SST observed from buoys and satellite[J]. Journal of Climate, 2012, 25(5):1544-1569. [13] BIDLOT J R, HOLMES D J, WITTMANN P A, et al. Intercomparison of the performance of operational ocean wave forecasting systems with buoy data[J]. Weather and Forecasting,2002, 17(2):287-310. [14] 盧勇奪,王朝陽,王豹,等.我國海洋錨系浮標數(shù)據(jù)異常值檢測方法研究-以QF110和QF306為例[J]. 海洋預(yù)報, 2019, 36(6):37-43.LU Y D, WANG Z Y, WANG B, et al. Research on outlier detection method for marine anchor buoys in China, using QF110and QF306 as an example[J]. Marine Forecasts, 2019, 36(6):37-43. [15] 劉首華,陳滿春,董明媚,等.一種實用海洋浮標數(shù)據(jù)異常值質(zhì)控方法[J]. 海洋通報, 2016, 35(3):264-270.LIU S H, CHEN M C, DONG M M, et al. A quality control method for the outlier detection of buoy observations[J]. Marine Science Bulletin, 2016, 35(3):264-270. [16] PICKETT M H, TANG W Q, ROSENFELD L K, et al.QuikSCAT satellite comparisons with nearshore buoy wind data off the U. S. west coast[J]. Journal of Atmospheric and Oceanic Technology, 2003, 20(12):1869-1879. [17] ZHU B L, CHEN J R, XU Y, et al. Validation of the CFOSAT scatterometer data with buoy observations and tests of operational application to extreme weather forecasts in Taiwan Strait[J]. Earth and Space Science, 2022, 9(3):e2021EA001865. [18] RIBAL A, YOUNG I R. Calibration and cross validation of global ocean wind speed based on scatterometer observations[J]. Journal of Atmospheric and Oceanic Technology, 2020, 37(2):279-297. [19] 中國氣象局. QX/T 51-2007地面氣象觀測規(guī)范第7部分:風向和風速觀測[S]. 北京:中國標準出版社, 2007.China Meteorological Administration. QX/T 51-2007 Specifications surface meteorological observation Part7:measurement of wind direction and wind speed[S]. Beijing:Standards Press of China, 2007. [20] 郭春迓,李天然,胡東明,等.南海北部測站風速質(zhì)量的控制方法[J]. 廣東氣象, 2016, 38(1):44-48.GUO C Y, LI T R, HU D M, et al. Control method of wind speed quality for measuring station in northern South China sea[J]. Guangdong Meteorology, 2016, 38(1):44-48. [21] 閔錦忠,王晨玨,賈瑞怡.蘇皖地面自動站資料的質(zhì)量控制及結(jié)果分析[J]. 大氣科學(xué)學(xué)報, 2018, 41(5):637-646.MIN J Z, WANG C J, JIA R Y. Quality control and result analysis for surface AWS data in Jiangsu and Anhui provinces[J]. Transactions of Atmospheric Sciences, 2018, 41(5):637-646. [22] 徐經(jīng)緯,張秀芝,羅勇,等. QuikSCAT衛(wèi)星遙感風場可靠性分析及其揭示的中國近海風速分布[J]. 海洋學(xué)報, 2013, 35(5):76-86.XU J W, ZHANG X Z, LUO Y, et al. The validation analysis of QuikSCAT wind speed and the wind distribution in China's offshore areas[J]. Acta Oceanologica Sinica, 2013, 35(5):76-86. [23] 鄭崇偉,高成志,張仲,等.島礁跑道設(shè)計中的風候特征分析[J]. 海洋預(yù)報, 2017, 34(4):52-57.ZHENG C W, GAO C Z, ZHANG Z, et al. Wind climate analysis under the demand of reef runway construction[J]. Marine Forecasts, 2017, 34(4):52-57. [24] SHIMADA T, SAWADA M, SHA W M, et al. Low-level easterly winds blowing through the Tsugaru Strait, Japan. Part I:case study and statistical characteristics based on observations[J]. Monthly Weather Review, 2010, 138(10):3806-3821. [25] TANG B H, BASSILL N P. Point downscaling of surface wind speed for forecast applications[J]. Journal of Applied Meteorology and Climatology, 2018, 57(3):659-674. |
|
服務(wù)與反饋:
|
|
【文章下載】【發(fā)表評論】【查看評論】【加入收藏】
|
|
|